激光焊接可以采用連續或脈沖激光束加以實現,激光焊接的原理可分為熱傳導型焊接和激光深熔焊接。功率密度小于104~105 W/cm2為熱傳導焊,此時熔深淺、焊接速度慢;功率密度大于105~107 W/cm2時,金屬表面受熱作用下凹成“孔穴”,形成深熔焊,具有焊接速度快、深寬比大的特點。其中熱傳導型激光焊接原理為:激光輻射加熱待加工表面,表面熱量通過熱傳導向內部擴散,通過控制激光脈沖的寬度、能量、峰功率和重復頻率等激光參數,使工件熔化,形成特定的熔池。
激光深熔焊接一般采用連續激光光束完成材料的連接,其冶金物理過程與電子束焊接極為相似,即能量轉換機制是通過“小孔”(Key-hole)結構來完成的。在足夠高的功率密度激光照射下,材料產生蒸發并形成小孔。這個充滿蒸氣的小孔猶如一個黑體,幾乎吸收全部的入射光束能量,孔腔內平衡溫度達2500℃左右 [1] ,熱量從這個高溫孔腔外壁傳遞出來,使包圍著這個孔腔四周的金屬熔化。小孔內充滿在光束照射下壁體材料連續蒸發產生的高溫蒸汽,小孔四壁包圍著熔融金屬,液態金屬四周包圍著固體材料(而在大多數常規焊接過程和激光傳導焊接中,能量首先沉積于工件表面,然后靠傳遞輸送到內部)。孔壁外液體流動和壁層表面張力與孔腔內連續產生的蒸汽壓力相持并保持著動態平衡。光束不斷進入小孔,小孔外的材料在連續流動,隨著光束移動,小孔始終處于流動的穩定狀態。就是說,小孔和圍著孔壁的熔融金屬隨著前導光束前進速度向前移動,熔融金屬充填著小孔移開后留下的空隙并隨之冷凝,焊縫于是形成。上述過程的所有這一切發生得如此快,使焊接速度很容易達到每分鐘數米。
了解基本的功率密度、熱導焊、深熔焊概念之后,接下來對不同芯徑的功率密度和金相金相對比分析。
本次針對市面常見的激光芯徑進行焊接實驗對比:
▲不同芯徑激光器焦斑位置功率密度
從功率密度上看,在同樣的功率下,越細的芯徑,激光亮度越高,能量越集中,如果把激光比作一把尖刀,越細小芯徑的激光,越鋒利。14um芯徑功率密度是100um芯徑激光器的50倍以上,加工能力更強。同時這里計算的功率密度只是簡單的平均密度,實際的能量分布是近似高斯分布,中心能量會是平均功率密度的好幾倍。
▲不同芯徑激光能量分布示意圖
能量分布圖顏色即為能量分布,顏色越紅,能量越高,能量紅的地方為能量集中的地方,通過不同芯徑激光束的激光能量分布,可以看出激光束鋒不鋒利,激光束越小,能量越集中于一個點,越鋒利,穿透能力越強。
不同芯徑激光器對比:
(1)實驗采用速度為150mm/s,焦點位焊接,材料為1系鋁,2mm厚;
(2)芯徑越大,熔寬越大,熱影響區越大,同時單位功率密度越小,當芯徑超過200um時,在鋁銅等高反合金上不容易打出熔深,需要更高功率方可實現深熔焊;
(3)小芯徑激光器功率密度高,能夠以高能快速在材料表面打出匙孔,且熱影響區小,但是同時焊縫表面粗糙,在低速焊接時匙孔坍塌概率高,焊接周期匙孔閉合周期長,容易產生缺陷,氣孔等缺陷,適合高速加工或者帶擺動軌跡加工;
(4)大芯徑激光器由于光斑大,能量更為分散,更適合激光表面重熔、熔覆、退火等工藝。
-
激光器
+關注
關注
17文章
2492瀏覽量
60264 -
焊接
+關注
關注
38文章
3069瀏覽量
59609 -
激光焊接
+關注
關注
2文章
478瀏覽量
21011
發布評論請先 登錄
相關推薦
評論