精品国产人成在线_亚洲高清无码在线观看_国产在线视频国产永久2021_国产AV综合第一页一个的一区免费影院黑人_最近中文字幕MV高清在线视频

0
  • 聊天消息
  • 系統(tǒng)消息
  • 評(píng)論與回復(fù)
登錄后你可以
  • 下載海量資料
  • 學(xué)習(xí)在線課程
  • 觀看技術(shù)視頻
  • 寫(xiě)文章/發(fā)帖/加入社區(qū)
會(huì)員中心
創(chuàng)作中心

完善資料讓更多小伙伴認(rèn)識(shí)你,還能領(lǐng)取20積分哦,立即完善>

3天內(nèi)不再提示

虹科分享 | 谷歌Vertex AI平臺(tái)使用Redis搭建大語(yǔ)言模型

廣州虹科電子 ? 來(lái)源: 廣州虹科電子 ? 作者: 廣州虹科電子 ? 2023-09-18 11:26 ? 次閱讀

基礎(chǔ)模型和高性能數(shù)據(jù)層這兩個(gè)基本組件始終是創(chuàng)建高效、可擴(kuò)展語(yǔ)言模型應(yīng)用的關(guān)鍵,利用Redis搭建大語(yǔ)言模型,能夠?qū)崿F(xiàn)高效可擴(kuò)展的語(yǔ)義搜索、檢索增強(qiáng)生成、LLM 緩存機(jī)制、LLM記憶和持久化。有Redis加持的大語(yǔ)言模型可應(yīng)用于文檔檢索、虛擬購(gòu)物助手、客戶(hù)服務(wù)助理等,為企業(yè)帶來(lái)益處。

一、語(yǔ)言模型構(gòu)件

應(yīng)用程序生成、理解和使用人類(lèi)語(yǔ)言的能力正變得越來(lái)越重要,從客服機(jī)器人到虛擬助手,再到內(nèi)容生成,人們對(duì)AI應(yīng)用功能的需求橫跨眾多領(lǐng)域,而這一切的實(shí)現(xiàn),都要?dú)w功于谷歌的 PaLM 2 等基礎(chǔ)模型,這些模型經(jīng)過(guò)精心調(diào)教,可以生成類(lèi)似人類(lèi)表達(dá)風(fēng)格的內(nèi)容。

在這一動(dòng)態(tài)環(huán)境中,基礎(chǔ)模型和高性能數(shù)據(jù)層這兩個(gè)基本組件始終是創(chuàng)建高效、可擴(kuò)展語(yǔ)言模型應(yīng)用的關(guān)鍵。

1.基礎(chǔ)模型

基礎(chǔ)模型是生成式人工智能應(yīng)用的基石,大型語(yǔ)言模型(Large Language Model,LLM)是其中的一個(gè)子集。 LLM 通過(guò)大量的文本訓(xùn)練,使其能夠?yàn)楦鞣N任務(wù)生成具有上下文相關(guān)性的類(lèi)似人類(lèi)表達(dá)風(fēng)格的文本。改進(jìn)這些模型,使其更加復(fù)雜,從而使應(yīng)用可以更精煉、更有效地響應(yīng)用戶(hù)輸入。所選擇的語(yǔ)言模型會(huì)顯著影響應(yīng)用的性能、成本和服務(wù)質(zhì)量。

然而,PaLM 2 等模型雖然功能強(qiáng)大,但也有其局限性,例如當(dāng)缺乏特定領(lǐng)域的數(shù)據(jù)時(shí),模型可能不夠相關(guān),而且可能無(wú)法及時(shí)呈現(xiàn)新信息或準(zhǔn)確信息。 LLM 在提示(prompts)中可以處理的上下文長(zhǎng)度(即詞組數(shù)量)有硬性限制,此外,LLM 的訓(xùn)練或微調(diào)需要大量的計(jì)算資源,這會(huì)使成本劇增。要在這些限制和優(yōu)勢(shì)之間取得平衡,需要進(jìn)行謹(jǐn)慎的策略和強(qiáng)大基礎(chǔ)設(shè)施的支持。

2.高性能的數(shù)據(jù)層

高效的LLM 應(yīng)用程序由可擴(kuò)展的高性能數(shù)據(jù)層支撐,該組件可確保高速交易和低延遲,這對(duì)于保持用戶(hù)流暢交互至關(guān)重要。它在以下方面發(fā)揮關(guān)鍵作用:

·緩存預(yù)計(jì)算的請(qǐng)求響應(yīng)或嵌入

·對(duì)過(guò)去的交互歷史進(jìn)行持久化

·進(jìn)行語(yǔ)義搜索以檢索相關(guān)的上下文或知識(shí)

向量數(shù)據(jù)庫(kù)已成為一種流行的數(shù)據(jù)層解決方案。Redis 在向量搜索方面的投入遠(yuǎn)遠(yuǎn)早于當(dāng)下的向量數(shù)據(jù)庫(kù)熱潮,這反映了我們具有豐富的經(jīng)驗(yàn),尤其是在性能方面。Redis對(duì)于向量搜索的經(jīng)驗(yàn)在剛剛發(fā)布的 Redis 7.2 版本中得到了體現(xiàn),該版本包括可擴(kuò)展搜索功能預(yù)覽,與前一版本相比,每秒查詢(xún)次數(shù)提高了16倍。

基礎(chǔ)模型和向量數(shù)據(jù)庫(kù)在不同行業(yè)的LLM 應(yīng)用中發(fā)揮著至關(guān)重要的作用,因此引發(fā)了業(yè)界的極大興趣和炒作。例如,一些較新的獨(dú)立向量數(shù)據(jù)庫(kù)解決方案(如 Pinecone)宣布獲得巨額融資,并投入大量精力以贏得開(kāi)發(fā)人員的關(guān)注。然而,由于每周都有新的工具出現(xiàn),因此很難知道哪款工具真的能滿(mǎn)足企業(yè)需求。

GCP (Google’s Google Cloud Platform)的與眾不同之處在于其統(tǒng)一的產(chǎn)品,它將功能強(qiáng)大的基礎(chǔ)模型、可擴(kuò)展的基礎(chǔ)設(shè)施,以及一套用于調(diào)整、部署和維護(hù)這些模型的工具結(jié)合在一起,從而能夠確保最高級(jí)別的數(shù)據(jù)安全和隱私安全。

但是,要真正發(fā)揮這些進(jìn)展的潛力,一個(gè)高性能且可擴(kuò)展的數(shù)據(jù)層是不可或缺的,這就是Redis的作用所在。

3.可擴(kuò)展語(yǔ)言模型應(yīng)用的推理架構(gòu)
image.png

GCP 和 Redis Enterprise 用于語(yǔ)言模型應(yīng)用的推理架構(gòu)

這里所呈現(xiàn)的推理架構(gòu)適用于通用語(yǔ)言模型用例。它結(jié)合使用了Vertex AI(PaLM 2 基礎(chǔ)模型)、BigQuery 和 Redis Enterprise。

GCP 和 Redis Enterprise 用于語(yǔ)言模型應(yīng)用的推理架構(gòu)。

您可以按照開(kāi)源 GitHub 倉(cāng)庫(kù)中的Colab 筆記本逐步設(shè)置此 LLM 架構(gòu)。

1. 安裝庫(kù)和工具: 安裝所需的Python 庫(kù),使用 Vertex AI 進(jìn)行身份驗(yàn)證,并創(chuàng)建一個(gè) Redis 數(shù)據(jù)庫(kù)。

2. 創(chuàng)建 BigQuery 表格: 將數(shù)據(jù)集加載到您的GCP 項(xiàng)目中的 BigQuery 表格中。

3. 生成文本嵌入: 循環(huán)遍歷數(shù)據(jù)集中的記錄,使用PaLM 2 嵌入 API 創(chuàng)建文本嵌入。

4. 加載嵌入: 將文本嵌入和一些元數(shù)據(jù)加載到運(yùn)行中的Redis 服務(wù)器。

5. 創(chuàng)建向量索引 運(yùn)行Redis 命令來(lái)創(chuàng)建一個(gè)模式和一個(gè)新的索引結(jié)構(gòu),以實(shí)現(xiàn)實(shí)時(shí)搜索。

完成必要的設(shè)置步驟后,這個(gè)架構(gòu)就可以支持多種LLM 應(yīng)用,如聊天機(jī)器人和虛擬購(gòu)物助手。

二.在語(yǔ)言模型(LLM)應(yīng)用Redis

即使是經(jīng)驗(yàn)豐富的軟件開(kāi)發(fā)人員和應(yīng)用架構(gòu)師也可能對(duì)這個(gè)新的知識(shí)領(lǐng)域不了解,這個(gè)簡(jiǎn)短的總結(jié)應(yīng)該能幫助你迅速掌握要點(diǎn)。

1.利用Redis實(shí)現(xiàn)高效可擴(kuò)展的語(yǔ)義搜索

語(yǔ)義搜索從龐大的知識(shí)語(yǔ)料庫(kù)中提取語(yǔ)義相似的內(nèi)容。在這個(gè)過(guò)程中,知識(shí)被轉(zhuǎn)化為可以進(jìn)行比較的數(shù)值嵌入向量,以找到與用戶(hù)查詢(xún)最相關(guān)的上下文信息。

Redis 作為高性能向量數(shù)據(jù)庫(kù),擅長(zhǎng)索引非結(jié)構(gòu)化數(shù)據(jù),從而實(shí)現(xiàn)高效可擴(kuò)展的語(yǔ)義搜索。Redis 可以增強(qiáng)應(yīng)用程序迅速理解和響應(yīng)用戶(hù)查詢(xún)的能力,其強(qiáng)大的搜索索引能力有助于實(shí)現(xiàn)響應(yīng)迅速和準(zhǔn)確的用戶(hù)交互。

** 2.利用Redis實(shí)現(xiàn)檢索增強(qiáng)生成**

檢索增強(qiáng)生成(Retrieval-Augmented Generation,RAG)方法利用語(yǔ)義搜索等方法,在將提示發(fā)送到 LLM 之前動(dòng)態(tài)地注入事實(shí)知識(shí)。這種技術(shù)最大程度上減少了在專(zhuān)有或頻繁變動(dòng)的數(shù)據(jù)上對(duì) LLM 進(jìn)行微調(diào)的需求。RAG 允許對(duì) LLM 進(jìn)行上下文增強(qiáng),使其能夠更好地處理當(dāng)前的任務(wù),例如回答具體問(wèn)題、總結(jié)檢索內(nèi)容或生成新內(nèi)容。

作為向量數(shù)據(jù)庫(kù)和全文搜索引擎,Redis 有助于 RAG 工作流的順暢運(yùn)行。由于其低延遲的數(shù)據(jù)檢索能力,Redis 常常是執(zhí)行此任務(wù)的首選工具。它確保語(yǔ)言模型迅速而準(zhǔn)確地獲得所需的上下文,促進(jìn)了人工智能應(yīng)用高效的執(zhí)行任務(wù)。
image.png檢索增強(qiáng)生成(RAG)架構(gòu)示例

3.利用Redis實(shí)現(xiàn)LLM 的緩存機(jī)制

緩存是增強(qiáng)LLM 響應(yīng)能力和計(jì)算效率的強(qiáng)大技術(shù)手段。

標(biāo)準(zhǔn)緩存提供了一種機(jī)制,用于存儲(chǔ)并快速檢索預(yù)生成的常見(jiàn)查詢(xún)響應(yīng),從而降低計(jì)算負(fù)載和響應(yīng)時(shí)間。然而,在動(dòng)態(tài)對(duì)話(huà)背景中使用人類(lèi)語(yǔ)言時(shí),完全匹配的查詢(xún)很少,這就是語(yǔ)義緩存發(fā)揮作用的地方。

語(yǔ)義緩存可以理解并利用查詢(xún)的潛在語(yǔ)義。語(yǔ)義緩存識(shí)別并檢索與輸入查詢(xún)?cè)谡Z(yǔ)義上足夠相似的緩存響應(yīng)。這種能力極大地增加了緩存命中率,進(jìn)一步改善了響應(yīng)時(shí)間和資源利用率。

例如,在客戶(hù)服務(wù)場(chǎng)景中,多個(gè)用戶(hù)可能會(huì)使用不同的措辭詢(xún)問(wèn)類(lèi)似的常見(jiàn)問(wèn)題。語(yǔ)義緩存使得LLM 能夠在不進(jìn)行冗余計(jì)算的情況下迅速而準(zhǔn)確地回應(yīng)這些問(wèn)題。image.pngLLM緩存機(jī)制

Redis 非常適用于在 LLM 中實(shí)現(xiàn)緩存,其強(qiáng)大的功能集包括支持生存時(shí)間(TTL)和逐出策略,用于管理臨時(shí)數(shù)據(jù)。結(jié)合其向量數(shù)據(jù)庫(kù)的語(yǔ)義搜索能力,Redis 能夠高效快速地檢索緩存響應(yīng),從而顯著提升 LLM 的響應(yīng)速度和系統(tǒng)整體性能,即使在負(fù)載較重的情況下也能如此。

4.利用Redis實(shí)現(xiàn)內(nèi)存和持久化

保留過(guò)去的互動(dòng)和會(huì)話(huà)元數(shù)據(jù)對(duì)于確保上下文連貫和個(gè)性化對(duì)話(huà)至關(guān)重要,然而LLM 并沒(méi)有自適應(yīng)記憶,因此依賴(lài)一個(gè)可靠的系統(tǒng)進(jìn)行快速的對(duì)話(huà)數(shù)據(jù)存儲(chǔ)變得至關(guān)重要。

Redis 提供了一個(gè)強(qiáng)大的解決方案,用于管理 LLM 的記憶。它可以在大量需求下高效地訪問(wèn)聊天歷史和會(huì)話(huà)元數(shù)據(jù)。Redis使用其數(shù)據(jù)結(jié)構(gòu)存儲(chǔ)來(lái)處理傳統(tǒng)的內(nèi)存管理,同時(shí)其向量數(shù)據(jù)庫(kù)功能有助于提取語(yǔ)義相關(guān)的互動(dòng)內(nèi)容。

三、LLM 的應(yīng)用場(chǎng)景

1.文檔檢索

一些企業(yè)需要處理大量的文檔,而LLM 應(yīng)用可以成為文檔發(fā)現(xiàn)和檢索的強(qiáng)大工具,語(yǔ)義搜索有助于從廣泛的知識(shí)語(yǔ)料庫(kù)中精確定位相關(guān)信息。

2.虛擬購(gòu)物助手

LLM 可以支持復(fù)雜的電子商務(wù)虛擬購(gòu)物助手,通過(guò)上下文理解和語(yǔ)義搜索,它可以理解客戶(hù)的問(wèn)題,提供個(gè)性化的產(chǎn)品推薦,甚至實(shí)時(shí)模擬對(duì)話(huà)互動(dòng)。

3.客戶(hù)服務(wù)助理

將LLM 部署為客戶(hù)服務(wù)代理可以徹底改變客戶(hù)互動(dòng)方式,除了回答常見(jiàn)問(wèn)題外,系統(tǒng)還可以進(jìn)行復(fù)雜的對(duì)話(huà),為客戶(hù)提供定制化的幫助,并從過(guò)去的客戶(hù)互動(dòng)中進(jìn)行學(xué)習(xí)。

四.Redis 和 Google Cloud:強(qiáng)強(qiáng)聯(lián)合

1.基于知識(shí)

GCP 和 Redis 讓 LLM 應(yīng)用不僅僅是先進(jìn)的文本生成器,通過(guò)在運(yùn)行時(shí)迅速注入來(lái)自您自己領(lǐng)域的特定知識(shí),它們確保您的應(yīng)用可以提供基于知識(shí)、準(zhǔn)確和有價(jià)值的交互,特別適應(yīng)于您的組織知識(shí)庫(kù)。

2.簡(jiǎn)化架構(gòu)

Redis 不僅僅是一個(gè)鍵值數(shù)據(jù)庫(kù),它是實(shí)時(shí)數(shù)據(jù)的多功能工具,通過(guò)消除為不同用例管理多個(gè)服務(wù)的需求,它極大地簡(jiǎn)化了您的體系架構(gòu)。作為許多組織已經(jīng)信任的緩存和其他需求的工具,Redis 在 LLM 應(yīng)用中的集成起到了無(wú)縫擴(kuò)展的效果。

3.優(yōu)化性能

Redis 是低延遲和高吞吐量數(shù)據(jù)結(jié)構(gòu)的代名詞。當(dāng)與具有超強(qiáng)計(jì)算能力的GCP結(jié)合時(shí) ,您將擁有一個(gè)不僅智能而且響應(yīng)迅速的 LLM 應(yīng)用,即使在負(fù)載較重的情況下也能如此。

4.企業(yè)級(jí)能力

Redis是經(jīng)過(guò)時(shí)間驗(yàn)證的開(kāi)源數(shù)據(jù)庫(kù)核心,可為全球財(cái)富100強(qiáng)公司提供可靠服務(wù)。在Redis Enterprise提供的五個(gè)九(99.999%)可用性的支持下,并由 GCP 強(qiáng)大的基礎(chǔ)架構(gòu)提供支持,您可以完全信任其可以完全滿(mǎn)足企業(yè)需求。

5.加速上市進(jìn)程

利用Redis Enterprise,您可以更專(zhuān)注于創(chuàng)建 LLM 應(yīng)用,而不必費(fèi)心進(jìn)行數(shù)據(jù)庫(kù)設(shè)置。這種集成的便利性加速了上市進(jìn)程,為您的組織提供了競(jìng)爭(zhēng)優(yōu)勢(shì)。

盡管新的向量數(shù)據(jù)庫(kù)和生成式AI 產(chǎn)品可能在市場(chǎng)上引起了很大的關(guān)注,但是 GCP 和 Redis 的可靠組合更加值得信任。這些經(jīng)過(guò)時(shí)間驗(yàn)證的解決方案不會(huì)很快消失,它們已經(jīng)準(zhǔn)備好為您的 LLM 應(yīng)用提供動(dòng)力,無(wú)論是今天還是未來(lái)的數(shù)年。

虹科是Redis原廠的中國(guó)區(qū)戰(zhàn)略合作伙伴。我們持續(xù)關(guān)注各行業(yè)當(dāng)下急切需求,專(zhuān)注于為企業(yè)解答疑問(wèn),制定專(zhuān)屬服務(wù),提供一站式數(shù)據(jù)庫(kù)和商業(yè)智能解決方案。了解更多【企業(yè)級(jí)數(shù)據(jù)庫(kù)解決方案】及【企業(yè)緩存指南】,歡迎前往虹科云科技官網(wǎng)!
image.png
虹科云科技 ,主要分享企業(yè)級(jí)云解決方案,包括云計(jì)算、數(shù)據(jù)庫(kù)、商業(yè)智能、數(shù)據(jù)可視化、高性能計(jì)算、數(shù)據(jù)管理、人工智能等相關(guān)知識(shí)、產(chǎn)品信息、應(yīng)用案例及行業(yè)信息,如Redis Enterprise、Weka、Domo、Visokio、Nimibix等,為學(xué)習(xí)者傳輸前沿知識(shí)、為技術(shù)工程師解答專(zhuān)業(yè)問(wèn)題、為企業(yè)找到最適合的云解決方案!

審核編輯 黃宇

聲明:本文內(nèi)容及配圖由入駐作者撰寫(xiě)或者入駐合作網(wǎng)站授權(quán)轉(zhuǎn)載。文章觀點(diǎn)僅代表作者本人,不代表電子發(fā)燒友網(wǎng)立場(chǎng)。文章及其配圖僅供工程師學(xué)習(xí)之用,如有內(nèi)容侵權(quán)或者其他違規(guī)問(wèn)題,請(qǐng)聯(lián)系本站處理。 舉報(bào)投訴
  • AI
    AI
    +關(guān)注

    關(guān)注

    87

    文章

    30172

    瀏覽量

    268433
  • 語(yǔ)言模型
    +關(guān)注

    關(guān)注

    0

    文章

    508

    瀏覽量

    10245
  • LLM
    LLM
    +關(guān)注

    關(guān)注

    0

    文章

    274

    瀏覽量

    306
收藏 人收藏

    評(píng)論

    相關(guān)推薦

    搭建開(kāi)源大語(yǔ)言模型服務(wù)的方法

    本文我們將總結(jié)5種搭建開(kāi)源大語(yǔ)言模型服務(wù)的方法,每種都附帶詳細(xì)的操作步驟,以及各自的優(yōu)缺點(diǎn)。
    的頭像 發(fā)表于 10-29 09:17 ?133次閱讀

    聯(lián)發(fā)新一代天璣旗艦芯片針對(duì)谷歌語(yǔ)言模型Gemini Nano優(yōu)化

    近日,聯(lián)發(fā)宣布了一個(gè)重要的技術(shù)進(jìn)展——新一代天璣旗艦芯片已經(jīng)針對(duì)谷歌的大語(yǔ)言模型Gemini Nano進(jìn)行了深度優(yōu)化。
    的頭像 發(fā)表于 10-09 16:44 ?400次閱讀

    谷歌Vertex AI助力企業(yè)生成式AI應(yīng)用

    DeepMind 在模型技術(shù)方面積極探索創(chuàng)新,尤其著力于 Gemini 和 Imagen 的改進(jìn)。我們的企業(yè) AI 平臺(tái) Vertex AI
    的頭像 發(fā)表于 09-09 15:59 ?462次閱讀

    谷歌獲Character.AI模型技術(shù)授權(quán),創(chuàng)始人重歸谷歌懷抱

    8月5日最新資訊,創(chuàng)新企業(yè)Character.AI在上周五正式宣布,他們已經(jīng)與科技巨頭谷歌的母公司Alphabet達(dá)成了一項(xiàng)重要合作,非獨(dú)家授權(quán)谷歌使用其先進(jìn)的大型語(yǔ)言
    的頭像 發(fā)表于 08-05 14:35 ?414次閱讀

    Al大模型機(jī)器人

    金航標(biāo)kinghelm薩微slkor總經(jīng)理宋仕強(qiáng)介紹說(shuō),薩微Al大模型機(jī)器人有哪些的優(yōu)勢(shì)?薩AI
    發(fā)表于 07-05 08:52

    谷歌發(fā)布新型大語(yǔ)言模型Gemma 2

    在人工智能領(lǐng)域,大語(yǔ)言模型一直是研究的熱點(diǎn)。近日,全球科技巨頭谷歌宣布,面向全球研究人員和開(kāi)發(fā)人員,正式發(fā)布了其最新研發(fā)的大語(yǔ)言模型——Ge
    的頭像 發(fā)表于 06-29 09:48 ?407次閱讀

    【大語(yǔ)言模型:原理與工程實(shí)踐】揭開(kāi)大語(yǔ)言模型的面紗

    維基百、網(wǎng)頁(yè)內(nèi)容和書(shū)籍等,不僅掌握了語(yǔ)言的語(yǔ)法、語(yǔ)義和上下文信息,還能生成結(jié)構(gòu)連貫、語(yǔ)義合理的句子和段落。大語(yǔ)言模型的一個(gè)顯著特點(diǎn)是其龐大的參數(shù)量,已達(dá)數(shù)億甚至數(shù)十億級(jí)別。這種規(guī)模賦
    發(fā)表于 05-04 23:55

    使用Redis和Spring?Ai構(gòu)建rag應(yīng)用程序

    隨著AI技術(shù)的不斷進(jìn)步,開(kāi)發(fā)者面臨著如何有效利用現(xiàn)有工具和技術(shù)來(lái)加速開(kāi)發(fā)過(guò)程的挑戰(zhàn)。Redis與SpringAI的結(jié)合為Java開(kāi)發(fā)者提供了一個(gè)強(qiáng)大的平臺(tái),以便快速構(gòu)建并部署響應(yīng)式AI
    的頭像 發(fā)表于 04-29 08:04 ?976次閱讀
    使用<b class='flag-5'>Redis</b>和Spring?<b class='flag-5'>Ai</b>構(gòu)建rag應(yīng)用程序

    谷歌Vertex AI搜索在醫(yī)療保健領(lǐng)域正式推出

    谷歌公司近日宣布,其Vertex AI搜索功能在醫(yī)療保健領(lǐng)域正式亮相,并已成功與MedLM以及醫(yī)療保健數(shù)據(jù)引擎(HDE)完成集成。這一創(chuàng)新功能專(zhuān)為醫(yī)護(hù)人員設(shè)計(jì),旨在從繁雜的醫(yī)療記錄中快速且精準(zhǔn)地提取出關(guān)鍵的臨床信息。
    的頭像 發(fā)表于 03-22 14:08 ?579次閱讀

    谷歌模型合成工具在哪找到

    谷歌模型合成工具可以在谷歌的官方網(wǎng)站或相關(guān)的開(kāi)發(fā)者平臺(tái)上找到。具體地,您可以嘗試訪問(wèn)谷歌AI
    的頭像 發(fā)表于 03-01 18:13 ?1538次閱讀

    谷歌模型軟件有哪些功能

    谷歌模型軟件通常指的是谷歌推出的一系列人工智能模型和軟件工具,其中最具代表性的是Google Gemini。Google Gemini是谷歌
    的頭像 發(fā)表于 03-01 16:20 ?609次閱讀

    谷歌發(fā)布開(kāi)源AI模型Gemma

    近日,谷歌發(fā)布了全新AI模型Gemma,這款模型為各種規(guī)模的組織提供了前所未有的機(jī)會(huì),以負(fù)責(zé)任的方式在商業(yè)應(yīng)用中進(jìn)行分發(fā)。
    的頭像 發(fā)表于 02-28 17:38 ?812次閱讀

    谷歌發(fā)布輕量級(jí)開(kāi)源人工智能模型Gemma

    谷歌近日宣布推出開(kāi)源人工智能(AI模型系列Gemma,旨在為開(kāi)發(fā)人員和研究人員提供一個(gè)負(fù)責(zé)任的AI構(gòu)建平臺(tái)。這一舉措標(biāo)志著自2022年Op
    的頭像 發(fā)表于 02-23 11:38 ?809次閱讀

    谷歌推出AI擴(kuò)散模型Lumiere

    近日,谷歌研究院重磅推出全新AI擴(kuò)散模型Lumiere,這款模型基于谷歌自主研發(fā)的“Space-Time U-Net”基礎(chǔ)架構(gòu),旨在實(shí)現(xiàn)視頻
    的頭像 發(fā)表于 02-04 13:49 ?988次閱讀

    Imagen 2 現(xiàn)已在 Vertex AI 上全面推出

    以下文章來(lái)源于谷歌云服務(wù),作者 Google Cloud Vishy Tirumalashetty Google Cloud AI 生成式媒體產(chǎn)品主管 今天我們將與大家分享 Imagen 2 為
    的頭像 發(fā)表于 12-22 10:10 ?375次閱讀
    Imagen 2 現(xiàn)已在 <b class='flag-5'>Vertex</b> <b class='flag-5'>AI</b> 上全面推出