本文是PyTorch常用代碼段合集,涵蓋基本配置、張量處理、模型定義與操作、數據處理、模型訓練與測試等5個方面,還給出了多個值得注意的Tips,內容非常全面。
PyTorch最好的資料是官方文檔。本文是PyTorch常用代碼段,在參考資料[1](張皓:PyTorch Cookbook)的基礎上做了一些修補,方便使用時查閱。
基本配置
導入包和版本查詢
import torch import torch.nn as nn import torchvision print(torch.__version__) print(torch.version.cuda) print(torch.backends.cudnn.version()) print(torch.cuda.get_device_name(0))
可復現性
在硬件設備(CPU、GPU)不同時,完全的可復現性無法保證,即使隨機種子相同。但是,在同一個設備上,應該保證可復現性。具體做法是,在程序開始的時候固定torch的隨機種子,同時也把numpy的隨機種子固定。
np.random.seed(0) torch.manual_seed(0) torch.cuda.manual_seed_all(0) torch.backends.cudnn.deterministic = True torch.backends.cudnn.benchmark = False
顯卡設置
如果只需要一張顯卡。
# Device configuration device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')如果需要指定多張顯卡,比如0,1號顯卡。
importosos.environ['CUDA_VISIBLE_DEVICES']='0,1'
也可以在命令行運行代碼時設置顯卡:
CUDA_VISIBLE_DEVICES=0,1pythontrain.py
清除顯存:
torch.cuda.empty_cache()
也可以使用在命令行重置GPU的指令:
nvidia-smi--gpu-reset-i[gpu_id]
張量(Tensor)處理
張量的數據類型
PyTorch有9種CPU張量類型和9種GPU張量類型。
張量基本信息
tensor = torch.randn(3,4,5)print(tensor.type()) # 數據類型print(tensor.size()) # 張量的shape,是個元組print(tensor.dim()) # 維度的數量
命名張量
張量命名是一個非常有用的方法,這樣可以方便地使用維度的名字來做索引或其他操作,大大提高了可讀性、易用性,防止出錯。
# 在PyTorch 1.3之前,需要使用注釋 # Tensor[N, C, H, W] images = torch.randn(32, 3, 56, 56) images.sum(dim=1) images.select(dim=1, index=0) # PyTorch 1.3之后 NCHW = [‘N’, ‘C’, ‘H’, ‘W’] images = torch.randn(32, 3, 56, 56, names=NCHW) images.sum('C') images.select('C', index=0) # 也可以這么設置 tensor = torch.rand(3,4,1,2,names=('C', 'N', 'H', 'W')) # 使用align_to可以對維度方便地排序 tensor=tensor.align_to('N','C','H','W')
數據類型轉換
# 設置默認類型,pytorch中的FloatTensor遠遠快于DoubleTensor torch.set_default_tensor_type(torch.FloatTensor) # 類型轉換 tensor = tensor.cuda() tensor = tensor.cpu() tensor = tensor.float() tensor = tensor.long()
torch.Tensor與np.ndarray轉換
除了CharTensor,其他所有CPU上的張量都支持轉換為numpy格式然后再轉換回來。
ndarray = tensor.cpu().numpy() tensor = torch.from_numpy(ndarray).float() tensor = torch.from_numpy(ndarray.copy()).float() # If ndarray has negative stride.
Torch.tensor與PIL.Image轉換
# pytorch中的張量默認采用[N, C, H, W]的順序,并且數據范圍在[0,1],需要進行轉置和規范化 # torch.Tensor -> PIL.Image image = PIL.Image.fromarray(torch.clamp(tensor*255, min=0, max=255).byte().permute(1,2,0).cpu().numpy()) image = torchvision.transforms.functional.to_pil_image(tensor) # Equivalently way # PIL.Image -> torch.Tensor path = r'./figure.jpg' tensor = torch.from_numpy(np.asarray(PIL.Image.open(path))).permute(2,0,1).float() / 255 tensor = torchvision.transforms.functional.to_tensor(PIL.Image.open(path)) # Equivalently way
np.ndarray與PIL.Image的轉換
image = PIL.Image.fromarray(ndarray.astype(np.uint8)) ndarray = np.asarray(PIL.Image.open(path))
從只包含一個元素的張量中提取值
value=torch.rand(1).item()
張量形變
# 在將卷積層輸入全連接層的情況下通常需要對張量做形變處理, # 相比torch.view,torch.reshape可以自動處理輸入張量不連續的情況 tensor = torch.rand(2,3,4) shape = (6, 4) tensor = torch.reshape(tensor, shape)
打亂順序
tensor=tensor[torch.randperm(tensor.size(0))]#打亂第一個維度
水平翻轉
# pytorch不支持tensor[::-1]這樣的負步長操作,水平翻轉可以通過張量索引實現 # 假設張量的維度為[N, D, H, W]. tensor = tensor[:,:,:,torch.arange(tensor.size(3) - 1, -1, -1).long()]
復制張量
# Operation | New/Shared memory | Still in computation graph | tensor.clone() # | New | Yes | tensor.detach() # | Shared | No | tensor.detach.clone()()#|New|No|
張量拼接
''' 注意torch.cat和torch.stack的區別在于torch.cat沿著給定的維度拼接, 而torch.stack會新增一維。例如當參數是3個10x5的張量,torch.cat的結果是30x5的張量, 而torch.stack的結果是3x10x5的張量。 ''' tensor = torch.cat(list_of_tensors, dim=0) tensor = torch.stack(list_of_tensors, dim=0)
將整數標簽轉為one-hot編碼
# pytorch的標記默認從0開始 tensor = torch.tensor([0, 2, 1, 3]) N = tensor.size(0) num_classes = 4 one_hot = torch.zeros(N, num_classes).long() one_hot.scatter_(dim=1, index=torch.unsqueeze(tensor, dim=1), src=torch.ones(N, num_classes).long())
得到非零元素
torch.nonzero(tensor) # index of non-zero elements torch.nonzero(tensor==0) # index of zero elements torch.nonzero(tensor).size(0) # number of non-zero elements torch.nonzero(tensor == 0).size(0) # number of zero elements
判斷兩個張量相等
torch.allclose(tensor1, tensor2) # float tensor torch.equal(tensor1, tensor2) # int tensor
張量擴展
# Expand tensor of shape 64*512 to shape 64*512*7*7. tensor = torch.rand(64,512) torch.reshape(tensor, (64, 512, 1, 1)).expand(64, 512, 7, 7)
矩陣乘法
# Matrix multiplcation: (m*n) * (n*p) * -> (m*p). result = torch.mm(tensor1, tensor2) # Batch matrix multiplication: (b*m*n) * (b*n*p) -> (b*m*p) result = torch.bmm(tensor1, tensor2) # Element-wise multiplication. result = tensor1 * tensor2
計算兩組數據之間的兩兩歐式距離
利用廣播機制
dist = torch.sqrt(torch.sum((X1[:,None,:] - X2) ** 2, dim=2))
模型定義和操作
一個簡單兩層卷積網絡的示例:
# convolutional neural network (2 convolutional layers) class ConvNet(nn.Module): def __init__(self, num_classes=10): super(ConvNet, self).__init__() self.layer1 = nn.Sequential( nn.Conv2d(1, 16, kernel_size=5, stride=1, padding=2), nn.BatchNorm2d(16), nn.ReLU(), nn.MaxPool2d(kernel_size=2, stride=2)) self.layer2 = nn.Sequential( nn.Conv2d(16, 32, kernel_size=5, stride=1, padding=2), nn.BatchNorm2d(32), nn.ReLU(), nn.MaxPool2d(kernel_size=2, stride=2)) self.fc = nn.Linear(7*7*32, num_classes) def forward(self, x): out = self.layer1(x) out = self.layer2(out) out = out.reshape(out.size(0), -1) out = self.fc(out) return out model = ConvNet(num_classes).to(device)卷積層的計算和展示可以用這個網站輔助。
雙線性匯合(bilinear pooling)
X = torch.reshape(N, D, H * W) # Assume X has shape N*D*H*W X = torch.bmm(X, torch.transpose(X, 1, 2)) / (H * W) # Bilinear pooling assert X.size() == (N, D, D) X = torch.reshape(X, (N, D * D)) X = torch.sign(X) * torch.sqrt(torch.abs(X) + 1e-5) # Signed-sqrt normalization X = torch.nn.functional.normalize(X) # L2 normalization
多卡同步 BN(Batch normalization)
當使用 torch.nn.DataParallel 將代碼運行在多張 GPU 卡上時,PyTorch 的 BN 層默認操作是各卡上數據獨立地計算均值和標準差,同步 BN 使用所有卡上的數據一起計算 BN 層的均值和標準差,緩解了當批量大小(batch size)比較小時對均值和標準差估計不準的情況,是在目標檢測等任務中一個有效的提升性能的技巧。
sync_bn = torch.nn.SyncBatchNorm(num_features,
eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
將已有網絡的所有BN層改為同步BN層
def convertBNtoSyncBN(module, process_group=None): '''Recursively replace all BN layers to SyncBN layer. Args: module[torch.nn.Module]. Network ''' if isinstance(module, torch.nn.modules.batchnorm._BatchNorm): sync_bn = torch.nn.SyncBatchNorm(module.num_features, module.eps, module.momentum, module.affine, module.track_running_stats, process_group) sync_bn.running_mean = module.running_mean sync_bn.running_var = module.running_var if module.affine: sync_bn.weight = module.weight.clone().detach() sync_bn.bias = module.bias.clone().detach() return sync_bn else: for name, child_module in module.named_children(): setattr(module, name) = convert_syncbn_model(child_module, process_group=process_group)) return module
類似 BN 滑動平均
如果要實現類似 BN 滑動平均的操作,在 forward 函數中要使用原地(inplace)操作給滑動平均賦值。
class BN(torch.nn.Module) def __init__(self): ... self.register_buffer('running_mean', torch.zeros(num_features)) def forward(self, X): ... self.running_mean += momentum * (current - self.running_mean)
計算模型整體參數量
num_parameters=sum(torch.numel(parameter)forparameterinmodel.parameters())
查看網絡中的參數
可以通過model.state_dict()或者model.named_parameters()函數查看現在的全部可訓練參數(包括通過繼承得到的父類中的參數)
params = list(model.named_parameters()) (name, param) = params[28] print(name) print(param.grad) print('-------------------------------------------------') (name2, param2) = params[29] print(name2) print(param2.grad) print('----------------------------------------------------') (name1, param1) = params[30] print(name1) print(param1.grad)
模型可視化(使用pytorchviz)
szagoruyko/pytorchvizgithub.com
類似 Keras 的 model.summary() 輸出模型信息,使用pytorch-summary。
sksq96/pytorch-summarygithub.com
模型權重初始化
注意 model.modules() 和 model.children() 的區別:model.modules() 會迭代地遍歷模型的所有子層,而 model.children() 只會遍歷模型下的一層。
# Common practise for initialization. for layer in model.modules(): if isinstance(layer, torch.nn.Conv2d): torch.nn.init.kaiming_normal_(layer.weight, mode='fan_out', nonlinearity='relu') if layer.bias is not None: torch.nn.init.constant_(layer.bias, val=0.0) elif isinstance(layer, torch.nn.BatchNorm2d): torch.nn.init.constant_(layer.weight, val=1.0) torch.nn.init.constant_(layer.bias, val=0.0) elif isinstance(layer, torch.nn.Linear): torch.nn.init.xavier_normal_(layer.weight) if layer.bias is not None: torch.nn.init.constant_(layer.bias, val=0.0) # Initialization with given tensor. layer.weight = torch.nn.Parameter(tensor)
提取模型中的某一層
modules()會返回模型中所有模塊的迭代器,它能夠訪問到最內層,比如self.layer1.conv1這個模塊,還有一個與它們相對應的是name_children()屬性以及named_modules(),這兩個不僅會返回模塊的迭代器,還會返回網絡層的名字。
# 取模型中的前兩層 new_model = nn.Sequential(*list(model.children())[:2] # 如果希望提取出模型中的所有卷積層,可以像下面這樣操作: for layer in model.named_modules(): if isinstance(layer[1],nn.Conv2d): conv_model.add_module(layer[0],layer[1])
部分層使用預訓練模型
注意如果保存的模型是 torch.nn.DataParallel,則當前的模型也需要是:
model.load_state_dict(torch.load('model.pth'), strict=False)
將在 GPU 保存的模型加載到 CPU
model.load_state_dict(torch.load('model.pth', map_location='cpu'))
導入另一個模型的相同部分到新的模型
模型導入參數時,如果兩個模型結構不一致,則直接導入參數會報錯。用下面方法可以把另一個模型的相同的部分導入到新的模型中。
# model_new代表新的模型 # model_saved代表其他模型,比如用torch.load導入的已保存的模型 model_new_dict = model_new.state_dict() model_common_dict = {k:v for k, v in model_saved.items() if k in model_new_dict.keys()} model_new_dict.update(model_common_dict) model_new.load_state_dict(model_new_dict)
數據處理
計算數據集的均值和標準差
import os import cv2 import numpy as np from torch.utils.data import Dataset from PIL import Image def compute_mean_and_std(dataset): # 輸入PyTorch的dataset,輸出均值和標準差 mean_r = 0 mean_g = 0 mean_b = 0 for img, _ in dataset: img = np.asarray(img) # change PIL Image to numpy array mean_b += np.mean(img[:, :, 0]) mean_g += np.mean(img[:, :, 1]) mean_r += np.mean(img[:, :, 2]) mean_b /= len(dataset) mean_g /= len(dataset) mean_r /= len(dataset) diff_r = 0 diff_g = 0 diff_b = 0 N = 0 for img, _ in dataset: img = np.asarray(img) diff_b += np.sum(np.power(img[:, :, 0] - mean_b, 2)) diff_g += np.sum(np.power(img[:, :, 1] - mean_g, 2)) diff_r += np.sum(np.power(img[:, :, 2] - mean_r, 2)) N += np.prod(img[:, :, 0].shape) std_b = np.sqrt(diff_b / N) std_g = np.sqrt(diff_g / N) std_r = np.sqrt(diff_r / N) mean = (mean_b.item() / 255.0, mean_g.item() / 255.0, mean_r.item() / 255.0) std = (std_b.item() / 255.0, std_g.item() / 255.0, std_r.item() / 255.0) return mean, std
得到視頻數據基本信息
import cv2 video = cv2.VideoCapture(mp4_path) height = int(video.get(cv2.CAP_PROP_FRAME_HEIGHT)) width = int(video.get(cv2.CAP_PROP_FRAME_WIDTH)) num_frames = int(video.get(cv2.CAP_PROP_FRAME_COUNT)) fps = int(video.get(cv2.CAP_PROP_FPS)) video.release()
TSN 每段(segment)采樣一幀視頻
K = self._num_segments if is_train: if num_frames > K: # Random index for each segment. frame_indices = torch.randint( high=num_frames // K, size=(K,), dtype=torch.long) frame_indices += num_frames // K * torch.arange(K) else: frame_indices = torch.randint( high=num_frames, size=(K - num_frames,), dtype=torch.long) frame_indices = torch.sort(torch.cat(( torch.arange(num_frames), frame_indices)))[0] else: if num_frames > K: # Middle index for each segment. frame_indices = num_frames / K // 2 frame_indices += num_frames // K * torch.arange(K) else: frame_indices = torch.sort(torch.cat(( torch.arange(num_frames), torch.arange(K - num_frames))))[0] assert frame_indices.size() == (K,) return [frame_indices[i] for i in range(K)]
常用訓練和驗證數據預處理
其中 ToTensor 操作會將 PIL.Image 或形狀為 H×W×D,數值范圍為 [0, 255] 的 np.ndarray 轉換為形狀為 D×H×W,數值范圍為 [0.0, 1.0] 的 torch.Tensor。
train_transform = torchvision.transforms.Compose([ torchvision.transforms.RandomResizedCrop(size=224, scale=(0.08, 1.0)), torchvision.transforms.RandomHorizontalFlip(), torchvision.transforms.ToTensor(), torchvision.transforms.Normalize(mean=(0.485, 0.456, 0.406), std=(0.229, 0.224, 0.225)), ]) val_transform = torchvision.transforms.Compose([ torchvision.transforms.Resize(256), torchvision.transforms.CenterCrop(224), torchvision.transforms.ToTensor(), torchvision.transforms.Normalize(mean=(0.485, 0.456, 0.406), std=(0.229, 0.224, 0.225)), ])
模型訓練和測試
分類模型訓練代碼
# Loss and optimizer criterion = nn.CrossEntropyLoss() optimizer = torch.optim.Adam(model.parameters(), lr=learning_rate) # Train the model total_step = len(train_loader) for epoch in range(num_epochs): for i ,(images, labels) in enumerate(train_loader): images = images.to(device) labels = labels.to(device) # Forward pass outputs = model(images) loss = criterion(outputs, labels) # Backward and optimizer optimizer.zero_grad() loss.backward() optimizer.step() if (i+1) % 100 == 0: print('Epoch: [{}/{}], Step: [{}/{}], Loss: {}' .format(epoch+1, num_epochs, i+1, total_step, loss.item()))
分類模型測試代碼
# Test the model model.eval() # eval mode(batch norm uses moving mean/variance #instead of mini-batch mean/variance) with torch.no_grad(): correct = 0 total = 0 for images, labels in test_loader: images = images.to(device) labels = labels.to(device) outputs = model(images) _, predicted = torch.max(outputs.data, 1) total += labels.size(0) correct += (predicted == labels).sum().item() print('Test accuracy of the model on the 10000 test images: {} %' .format(100 * correct / total))
自定義loss
繼承torch.nn.Module類寫自己的loss。
class MyLoss(torch.nn.Moudle): def __init__(self): super(MyLoss, self).__init__() def forward(self, x, y): loss = torch.mean((x - y) ** 2) return loss
標簽平滑(label smoothing)
寫一個label_smoothing.py的文件,然后在訓練代碼里引用,用LSR代替交叉熵損失即可。label_smoothing.py內容如下:
import torch import torch.nn as nn class LSR(nn.Module): def __init__(self, e=0.1, reduction='mean'): super().__init__() self.log_softmax = nn.LogSoftmax(dim=1) self.e = e self.reduction = reduction def _one_hot(self, labels, classes, value=1): """ Convert labels to one hot vectors Args: labels: torch tensor in format [label1, label2, label3, ...] classes: int, number of classes value: label value in one hot vector, default to 1 Returns: return one hot format labels in shape [batchsize, classes] """ one_hot = torch.zeros(labels.size(0), classes) #labels and value_added size must match labels = labels.view(labels.size(0), -1) value_added = torch.Tensor(labels.size(0), 1).fill_(value) value_added = value_added.to(labels.device) one_hot = one_hot.to(labels.device) one_hot.scatter_add_(1, labels, value_added) return one_hot def _smooth_label(self, target, length, smooth_factor): """convert targets to one-hot format, and smooth them. Args: target: target in form with [label1, label2, label_batchsize] length: length of one-hot format(number of classes) smooth_factor: smooth factor for label smooth Returns: smoothed labels in one hot format """ one_hot = self._one_hot(target, length, value=1 - smooth_factor) one_hot += smooth_factor / (length - 1) return one_hot.to(target.device) def forward(self, x, target): if x.size(0) != target.size(0): raise ValueError('Expected input batchsize ({}) to match target batch_size({})' .format(x.size(0), target.size(0))) if x.dim() < 2: raise ValueError('Expected input tensor to have least 2 dimensions(got {})' .format(x.size(0))) if x.dim() != 2: raise ValueError('Only 2 dimension tensor are implemented, (got {})' .format(x.size())) smoothed_target = self._smooth_label(target, x.size(1), self.e) x = self.log_softmax(x) loss = torch.sum(- x * smoothed_target, dim=1) if self.reduction == 'none': return loss elif self.reduction == 'sum': return torch.sum(loss) elif self.reduction == 'mean': return torch.mean(loss) else: raise ValueError('unrecognized option, expect reduction to be one of none, mean, sum')或者直接在訓練文件里做label smoothing:
for images, labels in train_loader: images, labels = images.cuda(), labels.cuda() N = labels.size(0) # C is the number of classes. smoothed_labels = torch.full(size=(N, C), fill_value=0.1 / (C - 1)).cuda() smoothed_labels.scatter_(dim=1, index=torch.unsqueeze(labels, dim=1), value=0.9) score = model(images) log_prob = torch.nn.functional.log_softmax(score, dim=1) loss = -torch.sum(log_prob * smoothed_labels) / N optimizer.zero_grad() loss.backward() optimizer.step()
Mixup訓練
beta_distribution = torch.distributions.beta.Beta(alpha, alpha) for images, labels in train_loader: images, labels = images.cuda(), labels.cuda() # Mixup images and labels. lambda_ = beta_distribution.sample([]).item() index = torch.randperm(images.size(0)).cuda() mixed_images = lambda_ * images + (1 - lambda_) * images[index, :] label_a, label_b = labels, labels[index] # Mixup loss. scores = model(mixed_images) loss = (lambda_ * loss_function(scores, label_a) + (1 - lambda_) * loss_function(scores, label_b)) optimizer.zero_grad() loss.backward() optimizer.step()
L1 正則化
l1_regularization = torch.nn.L1Loss(reduction='sum') loss = ... # Standard cross-entropy loss for param in model.parameters(): loss += torch.sum(torch.abs(param)) loss.backward()
不對偏置項進行權重衰減(weight decay)
pytorch里的weight decay相當于l2正則:
bias_list = (param for name, param in model.named_parameters() if name[-4:] == 'bias') others_list = (param for name, param in model.named_parameters() if name[-4:] != 'bias') parameters = [{'parameters': bias_list, 'weight_decay': 0}, {'parameters': others_list}] optimizer = torch.optim.SGD(parameters, lr=1e-2, momentum=0.9, weight_decay=1e-4)
梯度裁剪(gradient clipping)
torch.nn.utils.clip_grad_norm_(model.parameters(), max_norm=20)
得到當前學習率# If there is one global learning rate (which is the common case). lr = next(iter(optimizer.param_groups))['lr'] # If there are multiple learning rates for different layers. all_lr = [] for param_group in optimizer.param_groups: all_lr.append(param_group['lr'])另一種方法,在一個batch訓練代碼里,當前的lr是optimizer.param_groups[0]['lr']
學習率衰減
# Reduce learning rate when validation accuarcy plateau. scheduler = torch.optim.lr_scheduler.ReduceLROnPlateau(optimizer, mode='max', patience=5, verbose=True) for t in range(0, 80): train(...) val(...) scheduler.step(val_acc) # Cosine annealing learning rate. scheduler = torch.optim.lr_scheduler.CosineAnnealingLR(optimizer, T_max=80) # Reduce learning rate by 10 at given epochs. scheduler = torch.optim.lr_scheduler.MultiStepLR(optimizer, milestones=[50, 70], gamma=0.1) for t in range(0, 80): scheduler.step() train(...) val(...) # Learning rate warmup by 10 epochs. scheduler = torch.optim.lr_scheduler.LambdaLR(optimizer, lr_lambda=lambda t: t / 10) for t in range(0, 10): scheduler.step() train(...) val(...)
優化器鏈式更新
從1.4版本開始,torch.optim.lr_scheduler 支持鏈式更新(chaining),即用戶可以定義兩個 schedulers,并交替在訓練中使用。
import torch from torch.optim import SGD from torch.optim.lr_scheduler import ExponentialLR, StepLR model = [torch.nn.Parameter(torch.randn(2, 2, requires_grad=True))] optimizer = SGD(model, 0.1) scheduler1 = ExponentialLR(optimizer, gamma=0.9) scheduler2 = StepLR(optimizer, step_size=3, gamma=0.1) for epoch in range(4): print(epoch, scheduler2.get_last_lr()[0]) optimizer.step() scheduler1.step() scheduler2.step()
模型訓練可視化
PyTorch可以使用tensorboard來可視化訓練過程。
安裝和運行TensorBoard。
pip install tensorboard tensorboard --logdir=runs
使用SummaryWriter類來收集和可視化相應的數據,放了方便查看,可以使用不同的文件夾,比如'Loss/train'和'Loss/test'。
from torch.utils.tensorboard import SummaryWriter import numpy as np writer = SummaryWriter() for n_iter in range(100): writer.add_scalar('Loss/train', np.random.random(), n_iter) writer.add_scalar('Loss/test', np.random.random(), n_iter) writer.add_scalar('Accuracy/train', np.random.random(), n_iter) writer.add_scalar('Accuracy/test', np.random.random(), n_iter)
保存與加載斷點
注意為了能夠恢復訓練,我們需要同時保存模型和優化器的狀態,以及當前的訓練輪數。
start_epoch = 0 # Load checkpoint. if resume: # resume為參數,第一次訓練時設為0,中斷再訓練時設為1 model_path = os.path.join('model', 'best_checkpoint.pth.tar') assert os.path.isfile(model_path) checkpoint = torch.load(model_path) best_acc = checkpoint['best_acc'] start_epoch = checkpoint['epoch'] model.load_state_dict(checkpoint['model']) optimizer.load_state_dict(checkpoint['optimizer']) print('Load checkpoint at epoch {}.'.format(start_epoch)) print('Best accuracy so far {}.'.format(best_acc)) # Train the model for epoch in range(start_epoch, num_epochs): ... # Test the model ... # save checkpoint is_best = current_acc > best_acc best_acc = max(current_acc, best_acc) checkpoint = { 'best_acc': best_acc, 'epoch': epoch + 1, 'model': model.state_dict(), 'optimizer': optimizer.state_dict(), } model_path = os.path.join('model', 'checkpoint.pth.tar') best_model_path = os.path.join('model', 'best_checkpoint.pth.tar') torch.save(checkpoint, model_path) if is_best: shutil.copy(model_path, best_model_path)
提取 ImageNet 預訓練模型某層的卷積特征
# VGG-16 relu5-3 feature. model = torchvision.models.vgg16(pretrained=True).features[:-1] # VGG-16 pool5 feature. model = torchvision.models.vgg16(pretrained=True).features # VGG-16 fc7 feature. model = torchvision.models.vgg16(pretrained=True) model.classifier = torch.nn.Sequential(*list(model.classifier.children())[:-3]) # ResNet GAP feature. model = torchvision.models.resnet18(pretrained=True) model = torch.nn.Sequential(collections.OrderedDict( list(model.named_children())[:-1])) with torch.no_grad(): model.eval() conv_representation = model(image)
提取 ImageNet 預訓練模型多層的卷積特征
class FeatureExtractor(torch.nn.Module): """Helper class to extract several convolution features from the given pre-trained model. Attributes: _model, torch.nn.Module. _layers_to_extract, listor set Example: >>> model = torchvision.models.resnet152(pretrained=True) >>> model = torch.nn.Sequential(collections.OrderedDict( list(model.named_children())[:-1])) >>> conv_representation = FeatureExtractor( pretrained_model=model, layers_to_extract={'layer1', 'layer2', 'layer3', 'layer4'})(image) """ def __init__(self, pretrained_model, layers_to_extract): torch.nn.Module.__init__(self) self._model = pretrained_model self._model.eval() self._layers_to_extract = set(layers_to_extract) def forward(self, x): with torch.no_grad(): conv_representation = [] for name, layer in self._model.named_children(): x = layer(x) if name in self._layers_to_extract: conv_representation.append(x) return conv_representation
微調全連接層
model = torchvision.models.resnet18(pretrained=True) for param in model.parameters(): param.requires_grad = False model.fc = nn.Linear(512, 100) # Replace the last fc layer optimizer=torch.optim.SGD(model.fc.parameters(),lr=1e-2,momentum=0.9,weight_decay=1e-4)
以較大學習率微調全連接層,較小學習率微調卷積層:
model = torchvision.models.resnet18(pretrained=True) finetuned_parameters = list(map(id, model.fc.parameters())) conv_parameters = (p for p in model.parameters() if id(p) not in finetuned_parameters) parameters = [{'params': conv_parameters, 'lr': 1e-3}, {'params': model.fc.parameters()}] optimizer = torch.optim.SGD(parameters, lr=1e-2, momentum=0.9, weight_decay=1e-4)
其他注意事項
不要使用太大的線性層。因為nn.Linear(m,n)使用的是的內存,線性層太大很容易超出現有顯存。
不要在太長的序列上使用RNN。因為RNN反向傳播使用的是BPTT算法,其需要的內存和輸入序列的長度呈線性關系。
model(x) 前用 model.train() 和 model.eval() 切換網絡狀態。
不需要計算梯度的代碼塊用 with torch.no_grad() 包含起來。
model.eval() 和 torch.no_grad() 的區別在于,model.eval() 是將網絡切換為測試狀態,例如 BN 和dropout在訓練和測試階段使用不同的計算方法。torch.no_grad() 是關閉 PyTorch 張量的自動求導機制,以減少存儲使用和加速計算,得到的結果無法進行 loss.backward()。
model.zero_grad()會把整個模型的參數的梯度都歸零, 而optimizer.zero_grad()只會把傳入其中的參數的梯度歸零.
torch.nn.CrossEntropyLoss 的輸入不需要經過 Softmax。torch.nn.CrossEntropyLoss 等價于 torch.nn.functional.log_softmax + torch.nn.NLLLoss。
loss.backward() 前用 optimizer.zero_grad() 清除累積梯度。
torch.utils.data.DataLoader 中盡量設置 pin_memory=True,對特別小的數據集如 MNIST 設置 pin_memory=False 反而更快一些。num_workers 的設置需要在實驗中找到最快的取值。
用 del 及時刪除不用的中間變量,節約 GPU 存儲。使用 inplace 操作可節約 GPU 存儲,如:
x=torch.nn.functional.relu(x,inplace=True)
減少 CPU 和 GPU 之間的數據傳輸。例如如果你想知道一個 epoch 中每個 mini-batch 的 loss 和準確率,先將它們累積在 GPU 中等一個 epoch 結束之后一起傳輸回 CPU 會比每個 mini-batch 都進行一次 GPU 到 CPU 的傳輸更快。
使用半精度浮點數 half() 會有一定的速度提升,具體效率依賴于 GPU 型號。需要小心數值精度過低帶來的穩定性問題。
時常使用 assert tensor.size() == (N, D, H, W) 作為調試手段,確保張量維度和你設想中一致。
除了標記 y 外,盡量少使用一維張量,使用 n*1 的二維張量代替,可以避免一些意想不到的一維張量計算結果。
統計代碼各部分耗時:
with torch.autograd.profiler.profile(enabled=True, use_cuda=False) as profile:
...print(profile)# 或者在命令行運行python -m torch.utils.bottleneck main.py
使用TorchSnooper來調試PyTorch代碼,程序在執行的時候,就會自動 print 出來每一行的執行結果的 tensor 的形狀、數據類型、設備、是否需要梯度的信息。
# pip install torchsnooper import torchsnooper# 對于函數,使用修飾器@torchsnooper.snoop() # 如果不是函數,使用 with 語句來激活 TorchSnooper,把訓練的那個循環裝進 with 語句中去。 with torchsnooper.snoop(): 原本的代碼審核編輯:黃飛
-
cpu
+關注
關注
68文章
10829瀏覽量
211198 -
gpu
+關注
關注
28文章
4703瀏覽量
128729 -
函數
+關注
關注
3文章
4308瀏覽量
62449 -
數據處理
+關注
關注
0文章
583瀏覽量
28531 -
pytorch
+關注
關注
2文章
803瀏覽量
13152
原文標題:PyTorch使用高頻代碼段集錦,建議收藏!
文章出處:【微信號:vision263com,微信公眾號:新機器視覺】歡迎添加關注!文章轉載請注明出處。
發布評論請先 登錄
相關推薦
評論