在目前的聚合物電解質體系中,高分子聚合物在室溫下都有明顯的結晶性,這也是室溫下固態聚合物電解質的電導率遠遠低于液態電解質的原因。聚合物中的晶體大部分都是球晶,球晶之間是無定型區域,通常認為,鋰離子的傳導主要發生在無定型區域。因此,了解聚合物的相結構對鋰離子傳導機理的研究有幫助。
聚合物電解質的相結構
對于二元聚合物電解質體系來講,其相結構主要兩種:晶體區和無定型區其中晶體區的形成由動力學主導,與具體的制備條件和時間直接相關。嚴格來講由于聚合物體系中晶體區的存在,且晶體區隨著條件變化較大,所以對不同工作的聚合物電解質之間的導電性能進行比較不是很科學。不過如果在一定條件下,晶體區的生長變化較慢,離子電導率偏差在一個可接受的范圍內,電導性能的比較也是可以接受的。這也是為什么我們經常會拿不同的結果進行比較。
由于聚合物形成的球晶的生長與時間相關,因此在溫度低于聚合物熔點時的離子電導率與時間相關。此外,聚合物電解質的鋰離子導電率與加熱速率、冷卻速率以及松弛時間都存在一定關系。例如松弛時間越長,聚合物的晶型越完善,結晶度越高,從而導致離子電導率隨著松弛時間的延長而逐漸下降至最小值。同理,如果冷卻速度越慢,結晶越完整,對應的離子的電導率也會逐漸降低至最小值。
以PEO和LiClO4二元聚合物電解質為例,該結構中存在多種相結構。首先LiCIO4與PEO可以形成多種絡合物,包括PEO6-LiClO4、PEO3-LiClO4,PEO2-LiClO4和 PEO-LiClO4。其中當 O:Li=10:1時,PEO6-LiClO4可以與 PEO 形成共熔體,熔點在50℃。此外當溫度升高至160℃可以形成大的共熔體。大的共熔體在冷卻過程中會產生三種不同的球晶:第一種,在120℃以上發生熔融,含鹽量高;第二種,在4560℃范圍內發生熔融,含鹽量低,而且形成動力學緩慢;第三種,熔點略低于主體聚合物,形成動力學較快。通過研究分析認為:第一種球晶應該是PEO3-LiClO4;第二種球晶可能是PEO3-LiClO4和PEO6-LiClO4~兩種絡合物的混合體;第三種球晶對應于PEO本身。此外,鋰鹽的含量以及熱處理的過程都會導致結構發生變化。
不同鋰鹽包括LiPF6、LiBF4、LiCF3SO3和LiAsF6與PEO 形成的絡合物基本上與LiCIO4類似,即鋰鹽的種類對于與PEO形成的絡合物的種類沒有直觀的影響。只是相對熔點更高;對于大陰離子的鋰鹽也可以與PEO形成絡合物,只是動力學更加緩慢。此外,壓力的大小也一定程度上影響晶體的生長。壓力大時促使球晶的生長減少無定型區域,對應鋰離子電導率下降。
總結:
因為聚合電解質的存在,多種絡合物已經同時存在晶區和無定型區,結構復雜,所以其電導機理的研究比較困難。此外鋰鹽在聚合物中還存在一定的解離,會形成各種離子對及多合離子等。常用的研究聚合物鋰離子傳導的機理的模型主要有阿倫尼烏斯方程(Amhenius)、VTF(Volgel-Tamman-Fulcher)方程、自由積模型、WLF(Wiliams-Landel-Fery)方程、動態鍵滲透模型、Meyer-Nelded法則和有效介質理論等。
阿倫尼烏斯方程認為鋰離子運動速率與電導率有直接關系,也就是與溫度強相關。
VTF方程認為鋰離子的傳導是通過聚合物鏈的熱運動實現的,而且聚合物提供了一定的自由體積,允許鋰離子的擴散發生。
自由體積模型認為離子在聚合物電解質中的擴散除了溫度有關,還與自由體積有關,而體系中的自由體積受到聚合物種類、電解質的解離與形成離子對的種類、體系中的壓強等相關。
動態滲透模型是基于局部動力學而提出的簡化模型,該模型認為聚合物電解質是以聚合物為主體,其中形成的絡合物分散在主體中組成準兩相結構,電導率因為電解質與填料界面存在的空間電荷層而提升。
審核編輯:劉清
-
鋰離子
+關注
關注
5文章
531瀏覽量
37481 -
電解質
+關注
關注
6文章
786瀏覽量
19916 -
電導率
+關注
關注
1文章
145瀏覽量
13837
原文標題:聚合物電解質是怎樣進行離子傳導的?
文章出處:【微信號:深圳市賽姆烯金科技有限公司,微信公眾號:深圳市賽姆烯金科技有限公司】歡迎添加關注!文章轉載請注明出處。
發布評論請先 登錄
相關推薦
評論