精品国产人成在线_亚洲高清无码在线观看_国产在线视频国产永久2021_国产AV综合第一页一个的一区免费影院黑人_最近中文字幕MV高清在线视频

0
  • 聊天消息
  • 系統消息
  • 評論與回復
登錄后你可以
  • 下載海量資料
  • 學習在線課程
  • 觀看技術視頻
  • 寫文章/發帖/加入社區
會員中心
創作中心

完善資料讓更多小伙伴認識你,還能領取20積分哦,立即完善>

3天內不再提示

為什么跑AI往往用GPU而不是CPU?

穎脈Imgtec ? 2024-04-24 08:27 ? 次閱讀

今天,人工智能AI)已經在各個領域遍地開花,無論身處哪個行業,使用AI來幫助獲取業務洞察,并建立競爭優勢,已經非常常見。不過一個有趣的現象是,在用戶采購AI基礎設施時,幾乎所有廠商都會強調其支持GPU的能力,并且支持的GPU數量越多,就代表其AI性能越強大。那么問題來了,為什么是GPU而不是CPU

GPU難道不是我們日常使用的電腦里的,用于提高游戲性能或設計圖形所需的圖形處理單元嗎?為什么在AI方面,我們計算機里的“大腦”(CPU)反而很少提及呢?


一、為什么AI需要GPU?

要了解為什么GPU更適合AI,我們就要從GPU的誕生說起。圖形處理單元 (GPU) 最初開發用于生成計算機圖形,是具有專用內存的專用處理器,通常執行渲染圖形所需的浮點運算。從GPU的誕生我們可以看到,GPU是專為計算機開發的,旨在提高它們處理3D圖形的能力。這種特性決定了GPU僅用于參與任務或應用程序代碼的某些部分,而不是整個過程。因此,GPU通常有較多的內核,用于處理頻繁且彼此獨立的簡單計算。而CPU又被稱為通用處理器,因為它幾乎可以運行任何類型的計算。不過CPU通常只有幾個內核,即使是服務器專用的CPU也不過幾十個內核,與GPU動輒成百上千個內核相比完全不是一個數量級。但這并不意味著CPU不夠好,CPU內核雖然更少,但比數千個GPU內核更強大。例如同時處理操作系統、處理電子表格、播放高清視頻、提取大型zip文件,這些是GPU根本無法完成的。說到這里,你該明白GPU和CPU的區別了吧。總結一下,CPU最擅長按順序處理單個更復雜的計算,而GPU更擅長并行處理多個但更簡單的計算。至于為什么AI需要的GPU,答案也很明顯了,因為訓練AI模型的過程需要同時對所有數據樣本執行幾乎相同的操作,而GPU的架構設計具有快速同時處理多個任務所需的并行處理能力。

不過要注意的是,盡管GPU非常適合于AI模型算法,但并不意味著GPU在所有情況下都適用:

1、規模較小的訓練CPU完全可以執行訓練AI模型所需的算法,特別是如果數據集規模相對較小,可以使用CPU避免高昂的前期成本。2、非并行算法本質上,GPU是為圖形處理而設計的,因此當某個AI模型算法并不是并行算法時,CPU就是更好的選擇。某些涉及邏輯或密集內存要求的AI算法也是CPU的強項。


二、GPU與AI計算

現在的AI計算,都在搶購GPU。英偉達也因此賺得盆滿缽滿,為什么會這樣呢?原因很簡單,因為AI計算和圖形計算一樣,也包含了大量的高強度并行計算任務。深度學習是目前最主流的人工智能算法。從過程來看,包括訓練(training)和推理(inference)兩個環節。訓練環節,通過投喂大量的數據,訓練出一個復雜的神經網絡模型。在推理環節,利用訓練好的模型,使用大量數據推理出各種結論。訓練環節由于涉及海量的訓練數據,以及復雜的深度神經網絡結構,所以需要的計算規模非常龐大,對芯片的算力性能要求比較高。而推理環節,對簡單指定的重復計算和低延遲的要求很高。它們所采用的具體算法,包括矩陣相乘、卷積、循環層、梯度運算等,分解為大量并行任務,可以有效縮短任務完成的時間。GPU憑借自身強悍的并行計算能力以及內存帶寬,可以很好地應對訓練和推理任務,已經成為業界在深度學習領域的首選解決方案。

目前,大部分企業的AI訓練,采用的是英偉達的GPU集群。如果進行合理優化,一塊GPU卡,可以提供相當于數十甚至上百臺CPU服務器的算力。


三、AI與算力

AI與算力是當今社會科技進步的兩大驅動力,它們的融合與創新正推動著各個行業的發展,引領我們進入一個全新的智能時代。算力,作為AI技術的基石,為AI提供了強大的計算能力和數據處理能力。隨著技術的不斷進步,算力的提升使得AI模型能夠處理更大規模的數據,實現更復雜的算法,從而提升AI的性能和準確度。算力的發展,使得AI在圖像識別、語音識別、自然語言處理等領域取得了巨大的突破,為我們的生活帶來了諸多便利。而AI的崛起,也反過來促進了算力的發展。隨著AI應用領域的不斷拓展,對于算力的需求也日益增長。為了滿足這種需求,人們不斷研發新的芯片、算法和架構,推動算力的不斷提升。同時,AI技術的發展也催生了一系列新的應用場景,如自動駕駛智能家居、智能醫療等,這些應用都需要強大的算力支持,從而推動了算力技術的不斷突破和創新。AI與算力的結合,正在推動各行各業的發展。在制造業中,AI與算力技術可以幫助企業實現智能制造、智能供應鏈等,提高生產效率和產品質量。在醫療領域,AI與算力技術可以幫助醫生實現精準診斷、個性化治療等,提高醫療水平和患者滿意度。在金融領域,AI與算力技術可以幫助銀行、保險等機構實現風險評估、智能投顧等,提高金融服務的智能化水平。總之,AI與算力是當今科技進步的重要驅動力,它們的融合與創新正推動著我們進入一個全新的智能時代。在未來的發展中,我們需要不斷關注技術趨勢、加強人才培養、加強監管和規范,推動AI與算力技術的健康發展,為人類創造更加美好的未來。

本文來源:渲大師

聲明:本文內容及配圖由入駐作者撰寫或者入駐合作網站授權轉載。文章觀點僅代表作者本人,不代表電子發燒友網立場。文章及其配圖僅供工程師學習之用,如有內容侵權或者其他違規問題,請聯系本站處理。 舉報投訴
  • gpu
    gpu
    +關注

    關注

    28

    文章

    4700

    瀏覽量

    128697
  • AI
    AI
    +關注

    關注

    87

    文章

    30129

    瀏覽量

    268410
  • 人工智能
    +關注

    關注

    1791

    文章

    46853

    瀏覽量

    237550
收藏 人收藏

    評論

    相關推薦

    CPU\GPU引領,國產AI PC進階

    電子發燒友網報道(文/黃晶晶)當前AI PC已經成為PC產業的下一個浪潮,國產CPUGPU廠商在PC市場一直處于追趕態勢,AI PC給了大家新的機遇,在這個賽道國產廠商加速了布局與滲
    的頭像 發表于 09-01 02:15 ?4997次閱讀
    <b class='flag-5'>CPU</b>\<b class='flag-5'>GPU</b>引領,國產<b class='flag-5'>AI</b> PC進階

    動畫渲染GPU還是CPU的選擇思路

    。根據使用的硬件類型,渲染可以分為CPU渲染和GPU渲染。理解這兩者之間的區別,能幫助我們選擇合適的渲染方式,從而提高工作效率和渲染質量。CPU渲染工作原理CPU渲染
    的頭像 發表于 09-28 08:05 ?184次閱讀
    動畫渲染<b class='flag-5'>用</b><b class='flag-5'>GPU</b>還是<b class='flag-5'>CPU</b>的選擇思路

    算力服務器為什么選擇GPU

    服務器會選擇GPU不是傳統的CPU呢?GPUCPU的區別
    的頭像 發表于 07-25 08:28 ?507次閱讀
    算力服務器為什么選擇<b class='flag-5'>GPU</b>

    新手小白怎么學GPU云服務器深度學習?

    新手小白想用GPU云服務器深度學習應該怎么做? 個人主機通常pytorch可以但是LexNet,AlexNet可能就直接就跑不動,如何實現更經濟便捷的實現
    發表于 06-11 17:09

    Arm發布針對旗艦智能手機的新一代CPUGPU IP

    全球領先的芯片設計公司Arm宣布了針對旗艦智能手機市場的全新CPUGPU IP設計方案——Cortex-X925 CPU和Immortalis G925 GPU。這兩款產品均基于Ar
    的頭像 發表于 05-31 09:44 ?547次閱讀

    CPU渲染和GPU渲染優劣分析

    使用計算機進行渲染時,有兩種流行的系統:基于中央處理單元(CPU)或基于圖形處理單元(GPU)。CPU渲染利用計算機的CPU來執行場景并將其渲染到接近完美。這也是執行渲染的更傳統方式。
    的頭像 發表于 05-23 08:27 ?533次閱讀
    <b class='flag-5'>CPU</b>渲染和<b class='flag-5'>GPU</b>渲染優劣分析

    AI訓練,為什么需要GPU

    隨著由ChatGPT引發的人工智能熱潮,GPU成為了AI大模型訓練平臺的基石,甚至是決定性的算力底座。為什么GPU能力壓CPU,成為炙手可熱的主角呢?要回答這個問題,首先需要了解當前人
    的頭像 發表于 04-24 08:05 ?1075次閱讀
    <b class='flag-5'>AI</b>訓練,為什么需要<b class='flag-5'>GPU</b>?

    gpu是什么和cpu的區別

    GPUCPU是兩種常見的計算機處理器,它們在結構和功能上有很大的區別。在這篇文章中,我們將探討GPUCPU的區別,并詳細介紹它們的原理、應用領域和性能特點。 一、概述 1.1
    的頭像 發表于 02-20 11:24 ?1.8w次閱讀

    gpu服務器是干什么的 gpu服務器與cpu服務器的區別有哪些

    gpu服務器是干什么的 gpu服務器與cpu服務器的區別 GPU服務器是一種專門用于處理圖形運算的服務器,
    的頭像 發表于 01-30 15:31 ?813次閱讀

    為什么GPUCPU更快?

    GPUCPU更快的原因并行處理能力:GPU可以同時處理多個任務和數據,CPU通常只能一次處理一項任務。這是因為
    的頭像 發表于 01-26 08:30 ?2242次閱讀
    為什么<b class='flag-5'>GPU</b>比<b class='flag-5'>CPU</b>更快?

    CPUGPU散熱器設計的異同及其重要性

    計算機的穩定和性能不受影響,散熱器成為了必要的組件。本文將詳述CPUGPU散熱器的設計異同以及其重要性。 一、設計異同 1. 散熱原理: CPUGPU散熱器的設計都是基于熱傳導和熱
    的頭像 發表于 01-09 14:00 ?1191次閱讀

    FPGA、ASIC、GPU誰是最合適的AI芯片?

    CPUGPU遵循的是馮·諾依曼體系結構,指令要經過存儲、譯碼、執行等步驟,共享內存在使用時,要經歷仲裁和緩存。 FPGA和ASIC并不是馮·諾依曼架構(是哈佛架構)。以FPGA
    發表于 01-06 11:20 ?1407次閱讀
    FPGA、ASIC、<b class='flag-5'>GPU</b>誰是最合適的<b class='flag-5'>AI</b>芯片?

    為什么繞組或線圈的電阻總是直流不是交流來測量

    為什么繞組或線圈的電阻總是直流不是交流來測量? 繞組或線圈的電阻是指電導體中流過的電流和電壓之間的關系,通常用歐姆(Ω)作為單位。電阻的測量對于電氣設備和電路的設計、安裝和維護來說非常重要。 在
    的頭像 發表于 12-20 14:34 ?766次閱讀

    CPUGPU之間的主要區別

    的任務。GPU的指令有限,只能執行與圖形相關的任務。它通常可以執行任何類型的任務,包括圖形,但不是以非常優化的方式。雖然GPU的唯一目的是比CPU更快地處理圖像和3
    的頭像 發表于 12-14 08:28 ?760次閱讀
    <b class='flag-5'>CPU</b>和<b class='flag-5'>GPU</b>之間的主要區別

    英偉達AI設計GPU算術電路有何優勢

    大量的算術電路陣列為英偉達GPU提供了動力,以實現前所未有的AI、高性能計算和計算機圖形加速。因此,改進這些算術電路的設計對于提升 GPU 性能和效率而言至關重要。
    發表于 12-05 11:05 ?404次閱讀