精品国产人成在线_亚洲高清无码在线观看_国产在线视频国产永久2021_国产AV综合第一页一个的一区免费影院黑人_最近中文字幕MV高清在线视频

0
  • 聊天消息
  • 系統消息
  • 評論與回復
登錄后你可以
  • 下載海量資料
  • 學習在線課程
  • 觀看技術視頻
  • 寫文章/發帖/加入社區
會員中心
創作中心

完善資料讓更多小伙伴認識你,還能領取20積分哦,立即完善>

3天內不再提示

使用OpenVINO?在你的本地設備上離線運行Llama3之快手指南

英特爾物聯網 ? 來源:英特爾物聯網 ? 2024-04-26 09:42 ? 次閱讀

人工智能領域,大型語言模型(LLMs)的發展速度令人震驚。2024年4月18日,Meta正式開源了LLama系列的新一代大模型Llama3,在這一領域中樹立了新的里程碑。Llama3不僅繼承了先前模型的強大能力,還通過技術革新,在多模態理解、長文本處理及語言生成等多個方面實現了質的飛躍。Llama3的開放性和靈活性也為開發者提供了前所未有的便利。無論是進行模型微調,還是集成到現有的系統中,Llama3都展現了極高的適應性和易用性。

除此之外,提到Llama3模型的部署,除了將其部署在云端之外,模型的本地化部署可以讓開發者能夠在不依賴云計算資源的情況下,實現數據處理和大模型運算的高效率和高隱私性。利用OpenVINO部署Llama3到本地計算資源,例如AI PC,不僅意味著更快的響應速度和更低的運行成本,還能有效地保護數據安全,防止敏感信息外泄。這對于需要處理高度敏感數據的應用場景尤其重要,如醫療、金融和個人助理等領域。

本文將在簡要介紹Llama3模型的基礎上,重點介紹如何使用 OpenVINO 對Llama3模型進行優化和推理加速,并將其部署在本地的設備上,進行更快、更智能推理的 AI 推理。

Llama3模型簡介

Llama3提供了多種參數量級的模型,如8B和70B參數模型。其核心特點和優勢可總結如下:

1

先進的能力與強大的性能

Llama3模型提供了在推理、語言生成和代碼執行等方面的SOTA性能,為大型語言模型(LLMs)設定了新的行業標準。

2

增強的效率

采用僅解碼器的Transformer架構與群組查詢注意力(GQA),優化了語言編碼效率和計算資源使用,適用于大規模AI任務。

3

全面的訓練與調優

在超過15萬億的tokens上進行預訓練,并通過SFT和PPO等創新的指令微調技術,Llama3在處理復雜的多語言任務和多樣化的AI應用中表現卓越。

4

開源社區焦點

作為Meta開源倡議的一部分發布,Llama3鼓勵社區參與和創新,開發者可以輕松訪問其生態系統并貢獻其發展。

利用 OpenVINO優化和加速推理

如前所述,部署Llama3模型到本地設備上,不僅意味著更快的響應速度和更低的運行成本,還能有效地保護數據安全,防止敏感信息外泄。因此,本文將重點介紹如何利用OpenVINO將Llama3模型進行優化后部署到本地的設備上。這個過程包括以下具體步驟,使用的是我們常用的 OpenVINO Notebooks GitHub倉庫[1]中的llm-chatbot 代碼示例。詳細信息和完整的源代碼可以在這里[2]找到。

[1]OpenVINO Notebooks GitHub倉庫

https://github.com/openvinotoolkit/openvino_notebooks/tree/latest

[2] 詳細信息與完整源代碼

https://github.com/openvinotoolkit/openvino_notebooks/tree/latest/notebooks/llm-chatbot

1

由安裝必要的依賴包開始

運行 OpenVINO Notebooks 倉庫的具體安裝指南[3]在這里。運行這個llm-chatbot 的代碼示例,需要安裝以下必要的依賴包。

[3] 具體的安裝指南

https://github.com/openvinotoolkit/openvino_notebooks?tab=readme-ov-file#-installation-guide

efac6d06-030b-11ef-a297-92fbcf53809c.png

2

選擇推理的模型

由于我們在 Jupyter Notebook 演示中提供了一組由 OpenVINO 支持的 多語種的大預言模型,您可以從下拉框中首先選擇語言。針對Llama3,我們選擇英語。

efb36a34-030b-11ef-a297-92fbcf53809c.png

接下來選擇 “llama-3-8b-instruct” 來運行該模型的其余優化和推理加速步驟。當然,很容易切換到其他列出的任意模型。

efd1bd04-030b-11ef-a297-92fbcf53809c.png

3

使用 Optimum-CLI進行模型轉換

Optimum Intel 是 Hugging Face Transformers 和 Diffuser 庫與 OpenVINO 之間的接口,用于加速 Intel 體系結構上的端到端流水線。它提供了易于使用的cli接口,即命令行接口,用于將模型導出為OpenVINO中間表示(IR)格式。使用下面的一行命令,就可以完成模型的導出。

optimum-cli export openvino --model  --task  

其中,--model參數是來自HuggingFace Hub的模型ID或帶有模型ID的已經將模型下載到本地目錄的路徑地址(使用.save_pretrained方法保存),--task是導出模型應解決的支持任務之一。對于LLM,它將是text-generation-with-past。如果模型初始化需要使用遠程代碼,則應額外傳遞--trust-remote-code遠程代碼標志。

4

模型權重壓縮

盡管像 Llama-3-8B-Instruct 這樣的 LLM 在理解和生成類人文本方面變得越來越強大和復雜,但管理和部署這些模型在計算資源、內存占用、推理速度等方面帶來了關鍵挑戰,尤其是對于AI PC這種客戶端設備。權重壓縮算法旨在壓縮模型的權重,并可用于優化大型模型的模型占用空間和性能,其中權重的大小相對大于激活的大小,例如大型語言模型(LLM)。與INT8壓縮相比,INT4壓縮可以進一步壓縮模型大小,并提升文本生成性能,但預測質量略有下降。因此,在這里我們選擇模型權重壓縮為INT4精度。

efeb2b86-030b-11ef-a297-92fbcf53809c.png

5

使用 Optimum-CLI進行權重壓縮

當使用Optimum-CLI導出模型時,您還可以選擇在線性、卷積和嵌入層上應用FP16、INT8位或INT4位權重壓縮。使用方法非常的簡便,就是將--weight格式分別設置為fp16、int8或int4。這種類型的優化允許減少內存占用和推理延遲。默認情況下,int8/int4的量化方案將是不對稱的量化壓縮。如果您需要使用對稱壓縮,可以添加--sym。

對Llama-3-8B-Instruct模型進行INT4量化,我們指定以下參數:

compression_configs = {
    "llama-3-8b-instruct": {
      "sym": True,
      "group_size": 128,
      "ratio": 0.8,
    },
}

--group size參數將定義用于量化的組大小,為128。

--ratio參數控制4位和8位量化之間的比率。這意味著80%的層將被量化為int4,而20%的層將量化為int8。

運行Optimum-CLI進行模型的下載及權重壓縮的命令如下:

optimum-cli export openvino --model "llama-3-8b-instruct" --task text-generation-with-past --weight-format int4 --group-size 128 --ratio 0.8 –sym

運行上述命令后,模型將從Hugging Face Hub自動下載Llama-3-8B-Instruct模型,并進行相應的模型壓縮操作。

對于模型下載有困難的開發者,也可以從ModelScope開源社區的以下鏈接:

Meta-Llama-3-8B-Instruct:

https://modelscope.cn/models/LLM-Research/Meta-Llama-3-8B-Instruct

Meta-Llama-3-70B-Instruct:

https://modelscope.cn/models/LLM-Research/Meta-Llama-3-70B-Instruct

通過Git的方式進行下載:

git clone https://www.modelscope.cn/LLM-Research/Meta-Llama-3-8B-Instruct.git

經過權重壓縮后,我們可以看到,8B模型的體積大小已經被壓縮為僅有5GB左右。

eff91020-030b-11ef-a297-92fbcf53809c.png

6

選擇推理設備和模型變體

由于 OpenVINO 能夠在一系列硬件設備上輕松部署,因此還提供了一個下拉框供您選擇將在其上運行推理的設備??紤]到要對模型尺寸和性能需求,在這里我們選擇搭載了英特爾酷睿 Ultra7 155H處理器的 AI PC上的GPU 作為推理設備。

f007a130-030b-11ef-a297-92fbcf53809c.png

7

使用 Optimum Intel 實例化模型

Optimum Intel可用于從將下載到本地并完成了權重壓縮后的模型進行加載,并創建推理流水線,通過Hugging FaceAPI使用OpenVINO Runtime運行推理。在這種情況下,這意味著我們只需要將 AutoModelForXxx 類替換為相應的 OVModelForXxx 類。

f01a109a-030b-11ef-a297-92fbcf53809c.png

8

運行聊天機器人

現在萬事具備,在這個 Notebook 代碼示例中我們還提供了一個基于 Gradio 的用戶友好的界面。現在就讓我們把聊天機器人運行起來吧。

f02fb4b8-030b-11ef-a297-92fbcf53809c.gif

小結

整個的步驟就是這樣!現在就開始跟著我們提供的代碼和步驟,動手試試用 OpenVINO 在本地設備上運行基于Llama3大語言模型的聊天機器人吧。



審核編輯:劉清

聲明:本文內容及配圖由入駐作者撰寫或者入駐合作網站授權轉載。文章觀點僅代表作者本人,不代表電子發燒友網立場。文章及其配圖僅供工程師學習之用,如有內容侵權或者其他違規問題,請聯系本站處理。 舉報投訴
  • 人工智能
    +關注

    關注

    1787

    文章

    45810

    瀏覽量

    234140
  • 聊天機器人
    +關注

    關注

    0

    文章

    323

    瀏覽量

    12250
  • 大模型
    +關注

    關注

    2

    文章

    2054

    瀏覽量

    1789
  • OpenVINO
    +關注

    關注

    0

    文章

    69

    瀏覽量

    129

原文標題:使用OpenVINO?在你的本地設備上離線運行Llama3之快手指南 | 開發者實戰

文章出處:【微信號:英特爾物聯網,微信公眾號:英特爾物聯網】歡迎添加關注!文章轉載請注明出處。

收藏 人收藏

    評論

    相關推薦

    【飛騰派4G版免費試用】仙女姐姐的嵌入式實驗室五~LLaMA.cpp及3B“小模型”OpenBuddy-StableLM-3B

    目使用了C++重寫了LLaMA模型,使其能夠在硬件較弱的設備使用CPU運行LLaMA模型,不需要較高的顯卡性能 獲取
    發表于 12-22 10:18

    【算能RADXA微服務器試用體驗】+ GPT語音與視覺交互:1,LLM部署

    。環境變量的配置,未來在具體項目中我們會再次提到。 下面我們正式開始項目。項目從輸入到輸出分別涉及了語音識別,圖像識別,LLM,TTS這幾個與AI相關的模塊。先從最核心的LLM開始。 由于LLAMA3
    發表于 06-25 15:02

    如何將應用程序移植到運行在基于Arm的設備的Windows?

    指南介紹如何將應用程序移植到運行在基于Arm的設備的Windows。該指南首先回顧了一般指南
    發表于 08-02 06:06

    無法在AMD Ryzen CPU運行OpenVINO trade怎么解決?

    在 AMD Ryzen CPU 運行OpenVINO?推理。 收到錯誤消息: libva error: vaGetDriverNameByIndex() failed with unknown libva error, dr
    發表于 08-15 06:46

    在Raspberry Pi從源代碼構建OpenVINO 2021.3收到錯誤怎么解決?

    在 Raspberry Pi 從源代碼構建 OpenVINO?2021.3。 運行OpenVINO?推理,并收到錯誤消息: ModuleNotFoundError:沒有
    發表于 08-15 08:24

    無法在OpenVINO trade Docker中運行OpenCV怎么解決?

    運行命令:docker run -ditu root:root --name=openvino -h \"openvino\" --privileged \\ --device
    發表于 08-15 08:29

    從Docker映像為Raspbian OpenVINO工具套件的安裝過程

    openvino-rpi) 運行和測試 Docker* 映像 已知限制: 該英特爾? Movidius?神經計算棒設備在執行過程中更改其供應商 ID 和 DeviceID,每次查找主機系統作為一個全新
    發表于 08-15 06:59

    了解快手作品是否熱門的3種方法

    ? ? ? ?很多小伙伴發布作品之后,就一心撲在快手作品,看自己的快手評論、快手點贊、快手播放的數量情況如何,那么我們怎么知道自己的
    發表于 03-27 11:30 ?3602次閱讀

    快手指優先開源硬件設計

    電子發燒友網站提供《最快手指優先開源硬件設計.zip》資料免費下載
    發表于 06-09 10:36 ?0次下載
    最<b class='flag-5'>快手指</b>優先開源硬件設計

    百度智能云國內首家支持Llama3全系列訓練推理!

    4月18日,Meta 正式發布 Llama 3,包括8B 和 70B 參數的大模型,官方號稱有史以來最強大的開源大模型。
    的頭像 發表于 04-20 09:20 ?251次閱讀
    百度智能云國內首家支持<b class='flag-5'>Llama3</b>全系列訓練推理!

    Llama 3 王者歸來,Airbox 率先支持部署

    前天,智算領域迎來一則令人振奮的消息:Meta正式發布了備受期待的開源大模型——Llama3。Llama3的卓越性能Meta表示,Llama3在多個關鍵基準測試中展現出卓越性能,超越了業內先進的同類
    的頭像 發表于 04-22 08:33 ?467次閱讀
    <b class='flag-5'>Llama</b> <b class='flag-5'>3</b> 王者歸來,Airbox 率先支持部署

    英特爾AI產品助力其運行Meta新一代大語言模型Meta Llama 3

    英特爾豐富的AI產品——面向數據中心的至強處理器,邊緣處理器及AI PC等產品為開發者提供最新的優化,助力其運行Meta新一代大語言模型Meta Llama 3
    的頭像 發表于 04-28 11:16 ?438次閱讀

    高通支持Meta Llama 3在驍龍終端上運行

    高通與Meta攜手合作,共同推動Meta的Llama 3大語言模型(LLM)在驍龍驅動的各類終端設備實現高效運行。此次合作致力于優化
    的頭像 發表于 05-09 10:37 ?289次閱讀

    Optimum Intel三步完成Llama3在算力魔方的本地量化和部署

    Llama3 是Meta最新發布的開源大語言模型(LLM), 當前已開源8B和70B參數量的預訓練模型權重,并支持指令微調。
    的頭像 發表于 05-10 10:34 ?720次閱讀
    Optimum Intel三步完成<b class='flag-5'>Llama3</b>在算力魔方的<b class='flag-5'>本地</b>量化和部署

    【AIBOX上手指南】快速部署Llama3

    Firefly開源團隊推出了Llama3部署包,提供簡易且完善的部署教程,過程無需聯網,簡單快捷完成本地化部署。點擊觀看Llama3快速部署教程:Step.1準備部署包進入Firefly下載中心
    的頭像 發表于 06-06 08:02 ?339次閱讀
    【AIBOX上<b class='flag-5'>手指南</b>】快速部署<b class='flag-5'>Llama3</b>