問:了解運算放大器電路中的功耗設(shè)計
為了了解運算放大器電路中的功耗問題,我們首先明白具有低靜態(tài)電流 (IQ)的放大器以及增加反饋網(wǎng)絡(luò)電阻值與功耗之間的關(guān)系。
讓我們首先考慮一個可能需要關(guān)注功率的示例電路:電池供電的傳感器在 1kHz時生成 50mV 幅度和 50mV 偏移的模擬正弦信號。信號需要放大到 0V 至 3V 的范圍以進行信號調(diào)節(jié)(圖 1),同時要盡可能節(jié)省電池電量,這將需要增益為 30V/V 的同相放大器配置,如圖 2 所示。那么,我們應(yīng)該如何來優(yōu)化該電路的功耗呢?
圖 1 : 示例電路中的輸入及輸出信號(圖片來源: Texas Instruments)
圖 2:傳感器放大電路(圖片來源: Texas Instruments)
運算放大器電路的功耗由多種因素組成,分別是靜態(tài)功率、運算放大器輸出功率和負(fù)載功率。靜態(tài)功率 (或簡稱 PQuiescent) 是保持放大器開啟所需的功率,數(shù)據(jù)表中一般以 IQ(靜態(tài)電流)表示,例如下圖中Texas InstrumentsOPA391規(guī)格書中的顯示。
圖3:TI OPA391運放的靜態(tài)電流 (圖片來源: Texas Instruments)
輸出功率 ( POutput)是運算放大器輸出級驅(qū)動負(fù)載時消耗的功率。最后,負(fù)載功率 ( PLoad)是負(fù)載本身消耗的功率。
在本例中,我們有一個單電源運算放大器,其正弦輸出信號具有直流電壓偏移。因此,我們將使用以下等式來計算總平均功率 (Ptotal avg) 。電源電壓由V+表示, Voff是輸出信號的直流偏移,Vamp是輸出信號的幅度,RLoad是運算放大器的總負(fù)載電阻。需要留意的,平均總功率與 IQ直接相關(guān)成正比,而與 RLoad成反比。
選擇具有合適 IQ的元器件
由于從以上公式5和6中有多個可變項,在選料時最好只考慮一項。選擇具有低 IQ的放大器是降低整體功耗的最直接策略。當(dāng)然,在這個過程中有一些權(quán)衡。例如,具有較低 IQ的設(shè)備通常具有較低的帶寬、較大的噪聲并且可能更難以穩(wěn)定。
由于不同類型的運算放大器的 IQ可能存在倍數(shù)級的差異,因此花時間選擇合適的放大器是值得的。以下引用 TITLV9042、OPA2333、OPA391和TLV8802作比較。單純從數(shù)字上的分析,對于需要最大功率效率的應(yīng)用,TLV8802 將是一個很好的選擇。
表1 : 各類低功耗運算放大器比較表
降低負(fù)載網(wǎng)絡(luò)的電阻值
現(xiàn)在繼續(xù)考慮公式 5 和 6 中的其余項。Vamp項相互抵消,對 Ptotal,avg和 Voff沒有影響,通常由應(yīng)用中預(yù)先確定。換句話說,系統(tǒng)無法使用Voff來降低功耗。類似地,V+ 軌電壓通常由電路中可用的電源電壓設(shè)置。另外,RLoad也是由應(yīng)用預(yù)先確定的。但是,RLoad是包括任何負(fù)載輸出的組件,而不僅是負(fù)載電阻器 RL。在圖 1 所示電路的情況下,RLoad將包括 RL和反饋組件 R1 和 R2。因此,RLoad將由等式7和8定義如下。
通過增加反饋電阻的值,系統(tǒng)中放大器的輸出功率亦相應(yīng)降低。當(dāng)Poutput支配 PQuiescent時,此技術(shù)特別有效,但也有其局限性。如果反饋電阻變得明顯大于 RL,則 RL將主導(dǎo) RLoad,從而使功耗停止下降。大反饋電阻器還會與放大器的輸入電容相互作用,使電路不穩(wěn)定并產(chǎn)生明顯的噪聲。
為了最大限度地減少這些組件的噪聲產(chǎn)生,最好將在每個運算放大器輸入端(見下圖4)看到的等效電阻的熱噪聲與放大器的電壓噪聲頻譜密度進行比較。經(jīng)驗法則是確保放大器的輸入電壓噪聲密度規(guī)格至少是從放大器的每個輸入端觀察到的等效電阻的電壓噪聲的三倍。
圖4:電阻器熱噪聲(圖片來源: Texas Instruments)
現(xiàn)實世界中的例子
使用這些低功耗設(shè)計技術(shù),讓我們回到最初的問題:在 1kHz 下生成 0 到 100mV 模擬信號的電池供電傳感器需要 30V/V 的信號放大率。下圖5比較了兩種設(shè)計。左側(cè)的設(shè)計使用典型的 3.3V 電源、尺寸不考慮節(jié)能的電阻器和TLV9002通用運算放大器。右側(cè)的設(shè)計使用更大的電阻值和更低功耗的TLV9042運算放大器。請注意,當(dāng) TLV9042 反相輸入端等效電阻約為 9.667kΩ 時,噪聲頻譜密度是少于放大器的寬帶噪聲的三分之一,以確保運算放大器的噪聲在電阻器產(chǎn)生的任何噪聲中占主導(dǎo)地位。
圖5:典型設(shè)計與細(xì)微的設(shè)計(圖片來源: Texas Instruments)
使用圖5中的值、設(shè)計規(guī)范和兩款運算放大器的規(guī)格,可以利用公式6分別得出 TLV9002 設(shè)計和TLV9042 設(shè)計的 Ptotal,avg。結(jié)果分別顯示于公式 9 和 10 。
從以上結(jié)果得出,TLV9002 設(shè)計的功耗是 TLV9042 設(shè)計的四倍多。這是較高放大器 IQ的結(jié)果,亦顯示利用高 IQ的運算放大器,就算嘗試使用低反饋電阻值的情況下,亦不會有顯著的功耗節(jié)省。以上例子我們有兩個技巧,就是增加電阻值和選擇具有較低靜態(tài)電流的運算放大器。這兩種策略在大多數(shù)運算放大器應(yīng)用中都可用。
使用低電壓軌省電
再重溫公式 1 和 6 定義具有正弦信號和直流偏移電壓的單電源運算放大器電路的平均功耗:
另外,從公式6中的V+是代表線路的電源軌 (V+),它是直接與功耗成正比,所以將電源軌 (V+)設(shè)置為電路中最低可用的電源電壓,這也是一個降低功耗的方法。許多運算放大器的最低電源電壓范圍為 2.7V 或 3.3V。之所以有此限制的原因,與將內(nèi)部晶體管維持在所需工作范圍內(nèi)所需的最低電壓有關(guān)。一些運算放大器設(shè)計用于低至 1.8V 甚至更低的電壓。例如,TLV9042 通用運算放大器可以在 1.2V 電壓軌下工作。
審核編輯:劉清
-
電阻器
+關(guān)注
關(guān)注
19文章
3689瀏覽量
61801 -
運算放大器
+關(guān)注
關(guān)注
213文章
4811瀏覽量
171709 -
單電源
+關(guān)注
關(guān)注
0文章
185瀏覽量
24455 -
靜態(tài)電流
+關(guān)注
關(guān)注
3文章
199瀏覽量
20822 -
熱噪聲
+關(guān)注
關(guān)注
0文章
45瀏覽量
8094
原文標(biāo)題:掌握幾個技巧 降低運放電路中的功耗!
文章出處:【微信號:得捷電子DigiKey,微信公眾號:得捷電子DigiKey】歡迎添加關(guān)注!文章轉(zhuǎn)載請注明出處。
發(fā)布評論請先 登錄
相關(guān)推薦
評論