精品国产人成在线_亚洲高清无码在线观看_国产在线视频国产永久2021_国产AV综合第一页一个的一区免费影院黑人_最近中文字幕MV高清在线视频

0
  • 聊天消息
  • 系統(tǒng)消息
  • 評論與回復
登錄后你可以
  • 下載海量資料
  • 學習在線課程
  • 觀看技術視頻
  • 寫文章/發(fā)帖/加入社區(qū)
會員中心
創(chuàng)作中心

完善資料讓更多小伙伴認識你,還能領取20積分哦,立即完善>

3天內不再提示

腦磁圖(MEG)新型技術及功能特點-多通道光泵磁力計便攜平臺

上海昊量光電設備有限公司 ? 2024-06-06 08:16 ? 次閱讀

腦磁圖(MEG)新型技術及功能特點

多通道光泵磁力計便攜平臺

腦磁圖(MEG)發(fā)展背景前景介紹

腦磁圖(MEG)通過評估神經電流產生的磁場來測量大腦功能。傳統(tǒng)的MEG使用超導傳感器,這對性能、實用性和部署產生了重大限制;然而,近年來,光泵磁力計optically-pumped-magnetometers(OPMs)的引入使該領域發(fā)生了革命性變化。OPMs可以在沒有低溫的情況下測量MEG信號,從而實現了“OPM-MEG”系統(tǒng)的概念,該系統(tǒng)表面上允許增加靈敏度和分辨率、壽命依從性、自由受試者移動和更低的成本。在這里,我們報告了一種新的OPM-MEG設計,具有小型化和集成的電子控制、高水平的便攜性和改進的傳感器動態(tài)范圍(可以說是現有儀器的最大限制)。我們表明,與已建立的儀器相比,該系統(tǒng)產生等效的措施;具體而言,當測量任務誘導的beta帶、伽馬帶和誘發(fā)的神經電反應時,來自兩個系統(tǒng)的源定位具有高度可比性,時間相關性>0.7在個體水平和>0.9群體中。使用電磁體模,我們通過在背景場中運行系統(tǒng)來證明改進的動態(tài)范圍8nT。我們表明,該系統(tǒng)在自由運動期間(包括坐立范式)收集數據是有效的,并且它與同時electroencephalography(EEG-臨床標準)兼容。最后,我們通過在兩個實驗室之間移動系統(tǒng)來證明可移植性。總體而言,我們的新系統(tǒng)被證明是OPM-MEG技術的重要一步,并為下一代功能醫(yī)學成像提供了一個有吸引力的平臺。

腦磁圖(MEG)測量電流通過大腦神經元組裝產生的磁場(Cohen 1968)。這些磁場的數學建模產生三維圖像,顯示electrophysiological活動的空間和時間特征。MEG是研究大腦功能的成熟工具,在神經科學和臨床實踐中具有應用(Baillet,2017)。在神經科學中,它可用于測量誘發(fā)反應,神經振蕩,功能連接和網絡動力學-顯示大腦如何不斷形成和溶解支持認知的網絡。臨床上,MEG最常用于癲癇,以定位負責癲癇發(fā)作的大腦區(qū)域以及周圍雄辯的皮層(De Tiège et al.,2017)。還有其他潛在的應用,從研究兒童常見疾病(例如,自閉癥聽覺誘發(fā)反應潛伏期的測量(Matsuzaki等人,2019年))到調查老年人的神經退行性疾病(例如,癡呆癥皮質減緩的測量(Gouw等人,2021年))。MEG在空間精度(因為磁場對頭骨的扭曲比EEG測量的電位小)和靈敏度(因為EEG更受非神經元來源(如肌肉)的人工制品的影響)方面優(yōu)于臨床標準electroencephalography(EEG)(Boto等人,2019年;Goldenholz等人,2009年)

近年來,MEG儀器通過引入光泵磁力計(OPMs)而發(fā)生了革命性的變化。(參見(Brookes等人,2022年;Schofield等人,2023年;Tierney等人,2019年)的評論。)OPMs測量磁場的靈敏度與傳統(tǒng)MEG使用的傳感器相似,但不需要低溫冷卻。它們也可以是微制造的(Schwindt等人,2007年;V. Shah等人,2007年,2020年;V.K.Shah&Wakai,2013年),因此它們小巧輕便。這導致了多種優(yōu)勢。例如,傳感器可以放置在更靠近頭皮表面的位置(與低溫設備相比,不再需要熱絕緣間隙);這顯著提高了信號幅度(Boto等人,2016年,2017年;livanainen等人,2017,2019,2020)理論計算表明,這可以提供前所未有的空間分辨率(高于傳統(tǒng)的MEG和EEG)(Nugent等人,2022年;Tierney等人,2022年;Wens,2023年)。陣列可以適應任何頭部形狀-從新生兒到成年人(Corvilain等人,2024年;Feys等人,2023年;Hill等人,2019年;Rier等人,2024年)。適應性還意味著陣列可以設計為優(yōu)化對特定效應(Hill等人,2024年)或大腦區(qū)域(Lin等人,2019年;Tierney,Levy等人,2021年)的敏感性。當傳感器隨著頭部移動時,參與者可以在記錄期間自由移動(假設背景場得到良好控制)(Holmes等,2018,2019,2023;Rea等,2021)。這使得在新任務期間記錄數據(Boto等,2018;Rea等,2022)甚至癲癇發(fā)作(Feys等,2023;Hillebrand等,2023)。對不同頭部大小/形狀的適應性加上運動魯棒性(Feys&De Tiège,2024)意味著,像EEG一樣,OPM-MEG系統(tǒng)是可穿戴的。然而,與EEG不同,傳感器不需要與頭部進行電接觸,使得OPM-MEG在患者友好性方面比EEG更實用。

最后,即使在開發(fā)的早期階段,基于OPM的系統(tǒng)也比傳統(tǒng)的MEG設備更便宜。這些顯著的優(yōu)勢在理論上可能導致OPMMEG成為electrophysiological測量的首選方法,甚至有可能取代EEG成為某些應用的臨床工具。


多通道OPM-MEG系統(tǒng)數據采集分析

我們最初的目標是比較兩種不同的OPM-MEG系統(tǒng)。兩者都由64個三軸Quspin QZFM OPM傳感器(QuSpin Inc. Colorado,USA)組成,每個傳感器都能夠在三個正交方向上測量磁場,從而實現192個獨立通道的數據收集。傳感器設計已經有了很好的記錄(Boto等人,2022;V.Shah等人,2020),這里不再詳細重復;簡而言之,每個傳感器頭都是一個獨立的單元,包括一個87Rb蒸汽電池,一個用于光泵浦的激光器,一個用于電池內場控制的板載電磁線圈和兩個用于信號讀出的光電二極管。光束分離器將激光輸出分開,相關光學器件通過電池投射兩個正交光束,以實現三軸場測量。傳感器的中位數噪聲底限預計~15fT/sqrt(Hz)在3-100 Hz范圍內。這比典型的單軸或雙軸OPM的噪聲底略高,因為需要將激光束分開進行三軸測量(Boto et al.,2022)。兩個系統(tǒng)的傳感器安裝在相同的3D打印頭盔中(Cerca Magnetics Limited,Nottingham,UK),確保陣列幾何形狀對于所有測量都是相同的(參見圖1A-插圖)。陣列被放置在一個磁屏蔽室(MSR)中,包括四個金屬層和一個銅層,以分別衰減DC/低頻和高頻磁干擾場(Magnetic Shields Limited,Kent,UK)。MSR墻壁配備了消磁線圈,以減少掃描前的殘余磁化。MSR還配備了矩陣線圈(Holmeset al.,2023)和指紋線圈(Holmeset al.,2019)-兩者都能夠進行主動場控制(Cerca Magnetics Limited,Nottingham,UK)。單個“采集”計算機用于OPM-MEG控制和數據采集;該范式(以及相關的時間標記(“觸發(fā)器”)描述了向受試者提供刺激的時間)由第二臺“刺激”計算機控制。視覺刺激通過波導投影到位于受試者前方的背投影屏幕上~100 cm呈現。我們使用了Optoma HD39 Darbee投影儀,刷新率為120 Hz。兩個系統(tǒng)的示意圖如圖1C所示。

f34f648c-2399-11ef-bd4a-92fbcf53809c.png

圖1:OPM-MEG系統(tǒng):A)機架安裝(RM)OPM-MEG系統(tǒng);傳感器頭通過MSR外的電子機架控制。B)集成小型化(IM)OPM-MEG系統(tǒng);受試者佩戴的背包內包含所有控制和采集電子設備。系統(tǒng)原理圖——對兩個系統(tǒng)都有效,主要區(qū)別是電子OPM:紅色路徑顯示IM系統(tǒng),藍色顯示RM系統(tǒng)。集成微型系統(tǒng)的電子設備照片。

圖2顯示了我們的RM和IM系統(tǒng)之間的比較結果。單個主題的結果顯示(在所有6次運行中平均);第二個主題的等效圖在補充材料中提供。面板A顯示按鈕按下期間的beta調制。在這兩個系統(tǒng)中,最大的beta調制被定位到左側初級感覺運動皮層(由于右食指的運動),時間過程顯示出明顯的運動誘導beta幅度的減少,如預期的那樣。圖2B顯示了圓刺激呈現期間的伽馬調制。在這里,最大的刺激誘導增加在主要視覺區(qū)域,并觀察到刺激呈現期間伽馬幅度的預期增加。圖2C顯示了對面部呈現的誘發(fā)反應。圖像顯示了誘發(fā)反應的空間簽名,其延遲為~170ms,主要在梭形區(qū)域。

f386d458-2399-11ef-bd4a-92fbcf53809c.png

圖2:RM和IM系統(tǒng)比較:A)手指運動的β帶反應;在左邊的圖像中,疊加顯示最大beta調制的位置,右邊的時間過程顯示beta帶振幅的時間演變。b)對視覺刺激的伽馬反應;圖像顯示伽馬調制的位置,時間過程顯示伽馬帶振幅的演變。c)對面部呈現的誘發(fā)反應;圖像顯示最高誘發(fā)功率的位置,時間過程顯示試驗平均誘發(fā)反應。在所有三種情況下,數據在6次運行中平均;顯示了兩個系統(tǒng)的圖像,在時間過程圖中,紅色表示RM系統(tǒng),藍色表示IM系統(tǒng),陰影區(qū)域表示運行均方差。

圖3顯示了我們的坐立任務的結果。圖3A和C圖分別顯示了beta調制和從初級感覺運動皮層峰值提取的TFS的pseudo-T-statistical圖像。最大的beta調制局限于雙側感覺運動區(qū)域,從手部區(qū)域中間延伸到負責腿部運動的區(qū)域(回想一下,任務涉及站立時手指運動,所以這是可以預料的)。TFS在每次試驗的前4秒顯示出清晰的beta帶不同步,而受試者正在運動。圖3 顯示了傳感器測量的原始磁場數據。大多數傳感器顯示由運動產生的背景場偏移,>1.5 nT這超過了傳感器在開環(huán)模式下運行時的動態(tài)范圍。盡管有這些大的場偏移,傳感器仍保持運行。雖然傳感器在開環(huán)運行時可以進行這些測量,但信號的準確性將受到增益和CAPE誤差的顯著阻礙(Borna et al.,2022)。

f3b23f08-2399-11ef-bd4a-92fbcf53809c.png

圖3:坐立任務:A)任務引起的beta調制的空間特征。B)通道測量的原始磁場,顯示傳感器穿過a ~2 nT背景場,參與者從坐姿移動到站姿。C)來自感覺運動皮層的TFS,顯示神經振蕩的時頻演變。D)任務的再現,以展示運動范圍。

· 并發(fā)OPM-MEG/EEG聯動對比·

f3cc75b2-2399-11ef-bd4a-92fbcf53809c.png

圖4:并發(fā)OPM-MEG/EEG:A)戴著EEG帽和OPM-MEG頭盔的參與者。b)在自然頭部運動期間記錄數據:顯示了實驗中受試者所做的最大平移和旋轉。條代表受試者的平均值;數據點顯示每個個體受試者的值。C)和D)分別顯示組平均beta和伽馬效應。在這兩種情況下pseudo-T-statistical圖像和相關的TFS(來自beta的最小值和伽馬視覺皮層的中心點)在這些圖像中顯示了EEG和MEG。所有數據都是在運動的情況下記錄的。


小型化OPM-MEG系統(tǒng)總結

我們的總體目標是展示一種新的OPM-MEG系統(tǒng),具有集成和小型化的電子設備,并測試其評估人體electrophysiological功能的可行性。我們的主要演示看到新的IM系統(tǒng)在兩個受試者中多次使用,以提供與已建立的OPM-MEG設備的比較,該設備以前已經得到廣泛驗證(Boto等人,2022;Rea等人,2022;Rier等人,2023,2024),包括與傳統(tǒng)MEG(Boto等人,2021;Hill等人,2020;Rhodes等人,2023)。兩個系統(tǒng)獲得的結果顯示出驚人的一致性。源時間在系統(tǒng)之間具有高度可重復性,平均相關性為~0.75對于單個運行,以及>0.9對于同一受試者的多次運行的平均值。總體而言,這些結果表明這兩個系統(tǒng)提供了等效的性能。重要的是,這不僅驗證了小型化的電子設備,而且還表明MSR內部的這種電子設備(作為背包佩戴)不會在OPM傳感器處產生顯著的磁干擾,這些干擾不能通過均勻場校正(Tierney等人,2021)和波束成形(Brookes等人,2021)等方法在后處理中被拒絕。

最后,從實際角度來看,IM系統(tǒng)表現良好。在之前的OPM中,MEG系統(tǒng)的魯棒性一直是一個關鍵問題,特別是在測量中丟失的通道數量。在這里,在使用我們的IM系統(tǒng)的32個實驗中,我們丟失了(平均)3±5通道。在我們丟失通道的情況下,原因通常是傳感器頭和帶狀電纜之間的連接。傳感器頭使用卡扣連接,卡在帶狀電纜上,進行電氣連接。這在制造電纜時需要最小的公差,因為即使是電纜厚度的微小變化也會使卡扣連接器松動,從而導致連接不穩(wěn)定(這也是IM系統(tǒng)中空房間噪音略微增加的可能原因)。這是該系統(tǒng)未來幾代應該改變的事情。盡管有這個小限制,IM系統(tǒng)表現良好。64個Quspin QZFM傳感器的設置時間通常約為三分鐘——這包括加熱蒸汽電池和激光器、用PID控制器鎖定溫度、優(yōu)化所有傳感器參數、將每個電池內的場歸零、校準傳感器和打開閉環(huán)的時間。每個OPM傳感器頭的特性略有不同,這意味著控制參數必須在每個傳感器的基礎上進行優(yōu)化(就像超導量子干涉設備(SQUID)必須在傳統(tǒng)MEG系統(tǒng)中單獨調整一樣)。在IM系統(tǒng)中,由于這些參數是在傳感器啟動時優(yōu)化和設置的,傳感器頭可以輕松更換,而不需要在更換后重新啟動傳感器以外的任何東西。這是運行系統(tǒng)時的一個重要的實際優(yōu)勢,進一步增加了設計的模塊化。

這里報告了一種全新的OPM-MEG系統(tǒng)設計,具有小型化和集成的電子控制、高水平的便攜性和顯著改善的動態(tài)范圍。我們已經證明,與已建立的儀器相比,這種儀器提供了對刺激的誘導和誘發(fā)神經電反應的等效測量,并且它提供了改進的動態(tài)范圍。我們已經證明,該系統(tǒng)在參與者運動期間(包括從坐到站的范例)收集數據是有效的,并且它與同步EEG記錄兼容。最后,我們通過在兩個實驗室之間移動系統(tǒng)來證明便攜性。總體而言,我們的新系統(tǒng)代表了OPM-MEG向前邁出的重要一步,并為下一代功能性醫(yī)學成像提供了極具吸引力的平臺。

聲明:本文內容及配圖由入駐作者撰寫或者入駐合作網站授權轉載。文章觀點僅代表作者本人,不代表電子發(fā)燒友網立場。文章及其配圖僅供工程師學習之用,如有內容侵權或者其他違規(guī)問題,請聯系本站處理。 舉報投訴
  • 傳感器
    +關注

    關注

    2548

    文章

    50664

    瀏覽量

    751939
  • 多通道
    +關注

    關注

    0

    文章

    90

    瀏覽量

    28006
  • meg
    meg
    +關注

    關注

    0

    文章

    3

    瀏覽量

    7212
  • 磁力計
    +關注

    關注

    1

    文章

    71

    瀏覽量

    20837
收藏 人收藏

    評論

    相關推薦

    陀螺儀LSM6DSV16X與AI集成(11)----融合磁力計進行姿態(tài)解算

    MotionFX庫包含用于校準陀螺儀、加速度磁力計傳感器的例程。 將磁力計的數據與加速度和陀螺儀的數據融合,可以大幅提高姿態(tài)估計的精度。三軸加速度計提供設備的傾斜信息,陀螺儀提供
    的頭像 發(fā)表于 09-06 16:57 ?1828次閱讀
    陀螺儀LSM6DSV16X與AI集成(11)----融合<b class='flag-5'>磁力計</b>進行姿態(tài)解算

    磁力計LIS2MDL開發(fā)(4)----MotionMC 執(zhí)行磁力計校準

    磁力計測量結果容易受到周圍環(huán)境中的硬鐵(Hard Iron)和軟鐵(Soft Iron)效應的干擾,從而影響精度。為了解決這一問題,磁力計校準變得至關重要。STMicroelectronics提供
    的頭像 發(fā)表于 08-26 10:56 ?1264次閱讀
    <b class='flag-5'>磁力計</b>LIS2MDL開發(fā)(4)----MotionMC 執(zhí)行<b class='flag-5'>磁力計</b>校準

    驅動LSM6DS3TR-C實現高效運動檢測與數據采集(11)----磁力計校準

    磁力計校準是確保傳感器數據準確性和可靠性的關鍵步驟。磁力計用于測量地球磁場,并在導航、定位、姿態(tài)測量等應用中起到重要作用。然而,磁力計在使用過程中會受到環(huán)境磁場、硬件偏差、安裝誤差等因素的影響,從而
    的頭像 發(fā)表于 08-23 09:57 ?474次閱讀
    驅動LSM6DS3TR-C實現高效運動檢測與數據采集(11)----<b class='flag-5'>磁力計</b>校準

    驅動LSM6DS3TR-C實現高效運動檢測與數據采集(10)----融合磁力計進行姿態(tài)解算

    MotionFX庫包含用于校準陀螺儀、加速度磁力計傳感器的例程。 將磁力計的數據與加速度和陀螺儀的數據融合,可以大幅提高姿態(tài)估計的精度。三軸加速度計提供設備的傾斜信息,陀螺儀提供
    的頭像 發(fā)表于 08-02 15:50 ?2103次閱讀
    驅動LSM6DS3TR-C實現高效運動檢測與數據采集(10)----融合<b class='flag-5'>磁力計</b>進行姿態(tài)解算

    AMC60804T具有電流和電壓輸出DAC和通道ADC的4通道光學監(jiān)視器和控制器數據表

    電子發(fā)燒友網站提供《AMC60804T具有電流和電壓輸出DAC和通道ADC的4通道光學監(jiān)視器和控制器數據表.pdf》資料免費下載
    發(fā)表于 07-23 10:39 ?0次下載
    AMC60804T具有電流和電壓輸出DAC和<b class='flag-5'>多</b><b class='flag-5'>通道</b>ADC的4<b class='flag-5'>通道光</b>學監(jiān)視器和控制器數據表

    通道數據采集器的特點功能有哪些

    通道數據采集器是一種廣泛應用于工業(yè)自動化、科研實驗、環(huán)境監(jiān)測等領域的設備,它具有多個通道,可以同時采集多個信號,實現數據的實時采集、處理和存儲。本文將詳細介紹
    的頭像 發(fā)表于 07-02 09:05 ?730次閱讀

    功率技術原理、分類及功能特點

    在電子技術、通信、電力等領域,功率測量是至關重要的一環(huán)。功率作為測量功率的專用儀器,其準確性和可靠性直接關系到電子設備和系統(tǒng)的性能評估、故障診斷以及能源利用的效率。本文將全面介紹功率技術
    的頭像 發(fā)表于 05-10 15:27 ?1845次閱讀

    使用主控IIC讀取MPU9250的磁力計數據,速度特別慢怎么解決?

    使用iic對mpu9250進行讀取數據,讀取磁力計數據時采用的是主控iic方式,但是讀取的速度特別慢,幾秒一次,網上說磁力計數據輸出的速率最快是100hz,幾秒一次也太慢了;另外在初始化函數中開啟了延時,但是一次讀取6個字節(jié)的數據,只能讀到前兩個字節(jié),后四個字節(jié)全為0,請
    發(fā)表于 04-11 07:02

    單片機一個IIC連接兩個MPU9250如何設置讀取磁力計的模式?

    在STM32單片機的一個IIC接口上同時連了兩個MPU9250傳感器,將兩者的AD0分別設為高和低,對于磁力計都設置成Bypass模式,發(fā)現兩塊磁力計的數據都能讀出來,Bypass模式不是由單片機
    發(fā)表于 04-10 07:14

    MotionEC和MotionMC的庫在磁力計校準后為什么不調用MotionMC_SaveCalInNVM函數?

    MotionEC和MotionMC的庫在磁力計校準后為啥不調用MotionMC_SaveCalInNVM這個函數
    發(fā)表于 04-02 08:05

    從虛擬操縱到現實駕駛 邁來芯磁力計技術引領無限可能

    強力與三軸技術的完美結合,在游戲控制臺的操縱桿領域已大放異彩。
    的頭像 發(fā)表于 03-22 13:58 ?409次閱讀

    ADIS16485在沒有磁力計的情況下怎么進行初始對準呢?

    讀取了ADIS16485的數據發(fā)現陀螺儀幾個軸的輸出數據沒有什么差別,那這個傳感器是不是不能敏感出地球自轉角速度,如果是的話在沒有磁力計的情況下怎么進行初始對準呢?
    發(fā)表于 12-27 07:01

    磁力計LIS2MDL開發(fā)(1)----輪詢獲取磁力計數據

    本文將介紹如何使用 LIS2MDL 傳感器來讀取數據。主要步驟包括初始化傳感器接口、驗證設備ID、配置傳感器的數據輸出率和濾波器,以及通過輪詢方式持續(xù)讀取磁力數據和溫度數據。讀取到的數據會被轉換為適當的單位并通過串行通信輸出。
    的頭像 發(fā)表于 12-18 10:56 ?1374次閱讀
    <b class='flag-5'>磁力計</b>LIS2MDL開發(fā)(1)----輪詢獲取<b class='flag-5'>磁力計</b>數據

    Melexis宣布推出一款Triaxis?微功耗磁力計MLX90394

    據麥姆斯咨詢報道,近日,全球微電子工程公司Melexis宣布,推出Triaxis?微功耗磁力計MLX90394。
    的頭像 發(fā)表于 12-15 17:25 ?950次閱讀

    Melexis推出新款微型3D磁力計,拓展性能極限

    Melexis推出Triaxis微功耗磁力計MLX90394。這是一款基于霍爾效應的微型傳感器芯片,該產品實現了低噪音、微電流消耗和成本之間的平衡設計。
    的頭像 發(fā)表于 12-15 13:38 ?796次閱讀