碳質(zhì)負(fù)極材料在充放電過(guò)程中體積變化較小,具有較好的循環(huán)穩(wěn)定性能,而且碳質(zhì)負(fù)極材料本身是離子與電子的混合導(dǎo)體;另外,硅與碳化學(xué)性質(zhì)相近,二者能緊密結(jié)合,因此碳常用作與硅復(fù)合的首選基質(zhì)。
隨著時(shí)代的需求飛速發(fā)展,鋰離子電池的能量密度以每年7%~10%的速率提升。2016年,我國(guó)發(fā)布了動(dòng)力電池能量密度硬性指標(biāo),根據(jù)《節(jié)能與新能源汽車(chē)技術(shù)路線圖》,2020年純電動(dòng)汽車(chē)動(dòng)力電池的能量密度目標(biāo)為350W·h/kg。
為滿足新一代能源需求,開(kāi)發(fā)新型鋰電負(fù)極技術(shù)迫在眉睫。
硅在常溫下可與鋰合金化,生成Li15Si4相,理論比容量高達(dá)3572mA·h/g,遠(yuǎn)高于商業(yè)化石墨理論比容量(372mA·h/g),在地殼元素中儲(chǔ)量豐富(26.4%,第2位),成本低、環(huán)境友好,因而硅負(fù)極材料一直備受科研人員關(guān)注,是最具潛力的下一代鋰離子電池負(fù)極材料之一。
然而,硅在充放電過(guò)程中存在嚴(yán)重的體積膨脹(~300%),巨大的體積效應(yīng)及較低的電導(dǎo)率限制了硅負(fù)極技術(shù)的商業(yè)化應(yīng)用。為克服這些缺陷,研究者進(jìn)行了大量的嘗試,采用復(fù)合化技術(shù),利用“緩沖骨架”補(bǔ)償材料膨脹。
碳質(zhì)負(fù)極材料在充放電過(guò)程中體積變化較小,具有較好的循環(huán)穩(wěn)定性能,而且碳質(zhì)負(fù)極材料本身是離子與電子的混合導(dǎo)體;另外,硅與碳化學(xué)性質(zhì)相近,二者能緊密結(jié)合,因此碳常用作與硅復(fù)合的首選基質(zhì)。
在Si/C復(fù)合體系中,Si顆粒作為活性物質(zhì),提供儲(chǔ)鋰容量;C既能緩沖充放電過(guò)程中硅負(fù)極的體積變化,又能改善Si質(zhì)材料的導(dǎo)電性,還能避免Si顆粒在充放電循環(huán)中發(fā)生團(tuán)聚。因此Si/C復(fù)合材料綜合了二者的優(yōu)點(diǎn),表現(xiàn)出高比容量和較長(zhǎng)循環(huán)壽命,有望代替石墨成為新一代鋰離子電池負(fù)極材料。
從硅碳復(fù)合材料的結(jié)構(gòu)出發(fā),可將目前研究的硅碳復(fù)合材料分為包覆結(jié)構(gòu)和嵌入結(jié)構(gòu)。其中,包覆結(jié)構(gòu)是在活性物質(zhì)硅表面包覆碳層,緩解硅的體積效應(yīng),增強(qiáng)其導(dǎo)電性。根據(jù)包覆結(jié)構(gòu)和硅顆粒形貌,包覆結(jié)構(gòu)可分為核殼型、蛋黃-殼型以及多孔型。
核殼型
核殼型硅/碳復(fù)合材料是以硅顆粒為核,在核外表面均勻包覆一層碳層。碳層的存在不僅有利于增加硅的電導(dǎo)率,緩沖硅在脫嵌鋰過(guò)程中的部分體積效應(yīng),還可以最大限度降低硅表面與電解液的直接接觸,進(jìn)而緩解電解液分解,使整個(gè)電極的循環(huán)性能得到提高。
Zhang等采用乳液聚合法在硅納米顆粒表面包覆聚丙烯腈(PAN),經(jīng)800℃熱處理得到硅碳核殼結(jié)構(gòu)復(fù)合材料(Si@C)。無(wú)定形碳層抑制了充放電過(guò)程中硅顆粒的團(tuán)聚,Si@C在循環(huán)20次后容量維持在初始容量的50%左右。相比之下,硅納米顆粒在循環(huán)20次后容量衰減嚴(yán)重。
Hwa等以聚乙烯醇(PVA)為碳源,采用惰性氣氛下高溫?zé)峤夥▽?duì)硅納米顆粒進(jìn)行碳包覆,得到碳?xì)雍穸葹?~10nm厚的硅碳復(fù)合材料。采用硅納米顆粒可以降低硅的絕對(duì)體積效應(yīng),減弱材料內(nèi)部應(yīng)力,碳包覆則進(jìn)一步緩沖了硅內(nèi)核的膨脹,該復(fù)合材料在100mA/g電流下循環(huán)50次后比容量仍可達(dá)1800mA·h/g,展現(xiàn)出優(yōu)異的循環(huán)穩(wěn)定性,而純納米Si和碳包覆微米硅(4μm)容量則衰減至不足200mA·h/g。
Xu等通過(guò)高溫?zé)峤饩燮蚁?PVDF)得到核殼型硅碳復(fù)合材料,其碳層厚度為20~30nm;該硅碳復(fù)合材料電極在0.02~1.5V電壓范圍內(nèi),50mA/g電流條件下的首次可逆比容量為1328.8mA·h/g,循環(huán)30次后容量保持在1290mA·h/g,容量保持率達(dá)97%。核殼型硅/碳復(fù)合材料中,不同熱解碳源材料的選擇對(duì)復(fù)合體系中硅-碳嵌鋰基質(zhì)界面的影響也不盡相同。
Liu等對(duì)比分析了以聚環(huán)氧乙烯(PEO)、聚氯乙烯(PVC)、聚乙烯(PE)、氯化聚乙烯(CPE)和PVDF為熱解碳源的硅基核殼型負(fù)極材料,發(fā)現(xiàn):由于含氟材料對(duì)硅的刻蝕作用,部分F可嵌入到Si—Si鍵中,有效地強(qiáng)化了熱解碳與硅內(nèi)核的界面兼容性,相應(yīng)的Si-PVDF基活性材料也展現(xiàn)出更為優(yōu)異的循環(huán)穩(wěn)定。
因此,當(dāng)碳源有機(jī)前驅(qū)物中含有F或Cl元素時(shí),有利于獲得更穩(wěn)定的硅碳界面,使材料的電化學(xué)性能更為優(yōu)異。
總之,通過(guò)對(duì)硅材料進(jìn)行碳包覆,構(gòu)建核殼結(jié)構(gòu),有助于改善材料的循環(huán)穩(wěn)定性。然而,當(dāng)硅碳核殼結(jié)構(gòu)中的熱解碳無(wú)空隙地包覆在硅顆粒表面時(shí),由于硅核鋰化過(guò)程的體積效應(yīng)太大,會(huì)導(dǎo)致整個(gè)核殼顆粒膨脹,甚至導(dǎo)致表面碳層發(fā)生破裂,復(fù)合材料結(jié)構(gòu)坍塌,循環(huán)穩(wěn)定性迅速下降。為解決這一問(wèn)題,研究者從強(qiáng)化殼層機(jī)械性能方面入手,設(shè)計(jì)出了雙殼層結(jié)構(gòu)。
Tao等通過(guò)在硅納米顆粒表面包覆SiO2和熱解碳,制備出具有雙殼層結(jié)構(gòu)的復(fù)合材料(Si@SiO2@C),見(jiàn)圖A。與單殼層Si@C相比,Si@SiO2@C具有更高的容量保持率,在0.01~5V電壓范圍內(nèi)循環(huán)100次后仍具有785mA·h/g的可逆容量。
研究表明,中間層SiO2作為緩沖相,可進(jìn)一步減小循環(huán)過(guò)程產(chǎn)生的膨脹應(yīng)力;同時(shí),SiO2層還可與擴(kuò)散的Li+發(fā)生不可逆反應(yīng),生成Si和Li4SiO4合金,進(jìn)一步保證了材料的可逆容量。
-
充放電
+關(guān)注
關(guān)注
0文章
164瀏覽量
21813
原文標(biāo)題:【鑫鼎磁鐵·高工經(jīng)緯】詳解三大硅碳負(fù)極包覆結(jié)構(gòu)之核殼型
文章出處:【微信號(hào):gh_a6b91417f850,微信公眾號(hào):高工鋰電技術(shù)與應(yīng)用】歡迎添加關(guān)注!文章轉(zhuǎn)載請(qǐng)注明出處。
發(fā)布評(píng)論請(qǐng)先 登錄
相關(guān)推薦
評(píng)論