精品国产人成在线_亚洲高清无码在线观看_国产在线视频国产永久2021_国产AV综合第一页一个的一区免费影院黑人_最近中文字幕MV高清在线视频

0
  • 聊天消息
  • 系統(tǒng)消息
  • 評(píng)論與回復(fù)
登錄后你可以
  • 下載海量資料
  • 學(xué)習(xí)在線課程
  • 觀看技術(shù)視頻
  • 寫文章/發(fā)帖/加入社區(qū)
會(huì)員中心
創(chuàng)作中心

完善資料讓更多小伙伴認(rèn)識(shí)你,還能領(lǐng)取20積分哦,立即完善>

3天內(nèi)不再提示

使用GaNFET來設(shè)計(jì)四開關(guān)降壓-升壓DC-DC轉(zhuǎn)換器

駿龍電子 ? 來源:駿龍電子 ? 2024-11-07 17:15 ? 次閱讀

在不斷追求減小電路板尺寸和提高效率的征途中,氮化鎵場(chǎng)效應(yīng)晶體管(GaNFET)功率器件已成為破解目前難題的理想選擇。GaN是一項(xiàng)新興技術(shù),有望進(jìn)一步提高功率、開關(guān)速度以及降低開關(guān)損耗。這些優(yōu)勢(shì)讓功率密度更高的解決方案成為可能。

當(dāng)前市場(chǎng)上充斥著大量不同的Si MOSFET驅(qū)動(dòng)器,而新的GaN驅(qū)動(dòng)器和內(nèi)置GaN驅(qū)動(dòng)器的控制器還需要幾年才能面世。除了簡單的專用GaNFET驅(qū)動(dòng)器(如 LT8418)外,市場(chǎng)上還存在針對(duì)GaN的復(fù)雜降壓和升壓控制器(如LTC7890, LTC7891)。目前的四開關(guān)降壓-升壓解決方案仍有些復(fù)雜,但驅(qū)動(dòng)GaNFET并不像看起來那么困難。利用一些簡單的背景知識(shí),可以通過調(diào)整針對(duì)Si MOSFET的控制器來驅(qū)動(dòng)GaNFET。LT8390A是一個(gè)很好的選擇。這是一款專業(yè)的2 MHz降壓-升壓控制器,死區(qū)時(shí)間(25 ns)非常短,參見圖1。該降壓-升壓方案的檢測(cè)電阻與電感串聯(lián),且位于兩個(gè)熱環(huán)路的外部,這是降壓-升壓方案的一個(gè)新特性,讓控制器能夠在升壓和降壓工作區(qū)域(以及四開關(guān)降壓-升壓)中以峰值電流控制模式運(yùn)行。本文深入探討了四開關(guān)降壓-升壓GaNFET控制,但其原理同樣適用于簡單的降壓或升壓控制器。

323b647c-9cbf-11ef-a511-92fbcf53809c.svg

圖1. EVAL-LT8390A-AZ 24 VOUT5 A 4 四開關(guān)降壓-升壓GaN控制器原理圖

5 V柵極驅(qū)動(dòng)器必不可少

對(duì)于高功率轉(zhuǎn)換,硅驅(qū)動(dòng)器通常工作在5 V以上,典型的硅MOSFET柵極驅(qū)動(dòng)器電壓范圍為7 V至10 V甚至更高。這對(duì)GaNFET提出了挑戰(zhàn),因?yàn)槠浣^對(duì)最大柵極電壓額定值通常為6 V。甚至柵極和源極回路上的雜散PCB電感引起的振鈴如果超過最大柵極電壓,也可能導(dǎo)致災(zāi)難性的故障。相關(guān)設(shè)計(jì)人員必須仔細(xì)考慮布局,盡可能降低柵極和源極回路上的電感,才能安全有效地驅(qū)動(dòng)GaNFET。除了布局之外,實(shí)施器件級(jí)保護(hù)對(duì)于防止柵極發(fā)生災(zāi)難性過壓也很重要。

LT8390A提供專為較低柵極驅(qū)動(dòng)FET設(shè)計(jì)的5 V柵極驅(qū)動(dòng)器,因而是驅(qū)動(dòng)GaNFET的理想選擇。問題是硅FET驅(qū)動(dòng)器通常缺乏針對(duì)意外過壓的保護(hù)。更具體地說,硅柵極驅(qū)動(dòng)器上頂部FET的自舉電源不受調(diào)節(jié),這意味著頂部柵極驅(qū)動(dòng)器很容易漂移到GaNFET的絕對(duì)最大電壓以上。圖2提供了解決此問題的方案:將一個(gè)5.1 V齊納二極管(D5和D6)與自舉電容并聯(lián),以將該電壓箝位在GaNFET的推薦驅(qū)動(dòng)電平,進(jìn)而確保柵極電壓始終在安全工作范圍內(nèi)。

327a47fa-9cbf-11ef-a511-92fbcf53809c.svg

圖2. 帶有GaN控制保護(hù)元件的簡化四開關(guān)降壓-升壓GaN控制器原理圖

此外,為了提供更好的保護(hù),添加一個(gè)10 Ω電阻與自舉二極管(D3和D4)串聯(lián),以減小超快速和高功率開關(guān)節(jié)點(diǎn)可能引起的任何振鈴。

死區(qū)時(shí)間和體二極管挑戰(zhàn)

傳統(tǒng)轉(zhuǎn)換器中有一個(gè)續(xù)流二極管,它在關(guān)斷期間導(dǎo)通。同步轉(zhuǎn)換器用另一個(gè)開關(guān)代替續(xù)流二極管,以減少二極管的正向?qū)〒p耗。然而,如果頂部和底部開關(guān)同時(shí)導(dǎo)通,就會(huì)發(fā)生故障,導(dǎo)致?lián)舸H绻l(fā)生擊穿,則兩個(gè)FET都可能短路接地,進(jìn)而造成器件故障和其他災(zāi)難性后果。為了防止這種情況,控制器設(shè)置了死區(qū)時(shí)間,即頂部和底部開關(guān)均不導(dǎo)通的時(shí)間段。典型同步DC-DC控制器實(shí)現(xiàn)的死區(qū)時(shí)間長達(dá)60 ns。體二極管在此期間導(dǎo)通,因此對(duì)于硅MOSFET來說,該死區(qū)時(shí)間不會(huì)造成麻煩。

GaNFET沒有體二極管,導(dǎo)通和關(guān)斷的速度比硅MOSFET快得多。GaNFET可以在2 V至4 V的電壓下導(dǎo)通,而二極管的典型導(dǎo)通電壓為0.7 V。導(dǎo)通電壓乘以導(dǎo)通電流,可能導(dǎo)致死區(qū)時(shí)間內(nèi)的功率損耗增加近6倍。功率損耗的增加,加上較長的死區(qū)時(shí)間,可能造成FET過熱和損壞。比較好的解決方案是盡量縮短死區(qū)時(shí)間。然而,原本用于硅FET的控制器是根據(jù)硅FET緩慢的通斷特性(數(shù)十納秒)來設(shè)計(jì)死區(qū)時(shí)間,為防止擊穿,死區(qū)時(shí)間通常較長。

LT8390A設(shè)定的死區(qū)時(shí)間為25 ns,與市場(chǎng)上的許多同步控制器相比,該死區(qū)時(shí)間相對(duì)較短。該器件適用于高頻、高功率MOSFET控制,但對(duì)于GaNFET來說仍然太長。GaNFET的導(dǎo)通速度很快,僅幾納秒。因此,為了減少死區(qū)時(shí)間內(nèi)的額外導(dǎo)通損耗,建議添加一個(gè)續(xù)流肖特基二極管與同步GaNFET反向并聯(lián),將導(dǎo)通路徑轉(zhuǎn)移到損耗較小的路徑。圖2中的D1和D2說明了肖特基二極管應(yīng)放置在哪個(gè)FET上。D1跨接于同步降壓側(cè)FET,而D2跨接于同步升壓側(cè)FET。簡單的降壓轉(zhuǎn)換器只需要放置D1。對(duì)于簡單的升壓轉(zhuǎn)換器,需使用D2。

更高頻率、更高功率

LT8390A的開關(guān)頻率高達(dá)2 MHz。GaNFET的開關(guān)損耗顯著低于Si MOSFET,開關(guān)頻率和電壓更高時(shí),其功率損耗與后者相近。EVAL-LT8390A-AZGaNFET板將開關(guān)頻率設(shè)置為2 MHz,以突出 GaNFET在效率和尺寸方面的優(yōu)勢(shì)。

在室溫、24 V輸出下,GaNFET可產(chǎn)生120 W功率。該板尺寸與之前的LT8390A評(píng)估板 DC2598A相當(dāng),后者使用硅MOSFET,并提供12 VOUT和48 W功率。圖3展示了2 MHz GaN降壓-升壓電路的最大功率能力,而圖4比較了兩種評(píng)估板的效率。即使在電壓更高、輸出功率高2.5倍的情況下,GaNFET板的效率也高于Si MOSFET板。在電路板面積相似時(shí),使用GaNFET可以以更高的電壓和功率運(yùn)行。

32acbbb8-9cbf-11ef-a511-92fbcf53809c.svg

圖3. EVAL-LT8390A-AZ最大輸出電流與輸入電壓的關(guān)系,該板可在高頻下通 過寬輸入范圍產(chǎn)生120 W功率

32b41412-9cbf-11ef-a511-92fbcf53809c.svg

圖4. EVAL-LT8390A-AZ GaN控制器效率與DC2598A Si MOSFET控制器效率,GaNFET在更高電壓下提供更高的效率

結(jié)論

如果沒有專門用于驅(qū)動(dòng)GaNFET的DC-DC控制器,我們?nèi)匀豢梢杂行У仳?qū)動(dòng)GaNFET。在電路板面積近似時(shí),即便使用原本用于驅(qū)動(dòng)Si MOSFET的控制器,EVAL-LT8390A-AZ也能輕松輸出更大的功率并實(shí)現(xiàn)更高的效率。表1推薦了多款用于驅(qū)動(dòng)GaNFET的控制器。如果功率要求更高,例如并聯(lián)降壓-升壓GaNFET控制,請(qǐng)聯(lián)系廠家。通過研究提供5 V柵極驅(qū)動(dòng)器的控制器并整合額外的外部保護(hù)電路元件,我們可以安全地驅(qū)動(dòng)GaNFET,并探索電源轉(zhuǎn)換設(shè)計(jì)中的更多選擇。

32d1ebcc-9cbf-11ef-a511-92fbcf53809c.png

表1. 與GaNFET兼容的DC-DC控制器

聲明:本文內(nèi)容及配圖由入駐作者撰寫或者入駐合作網(wǎng)站授權(quán)轉(zhuǎn)載。文章觀點(diǎn)僅代表作者本人,不代表電子發(fā)燒友網(wǎng)立場(chǎng)。文章及其配圖僅供工程師學(xué)習(xí)之用,如有內(nèi)容侵權(quán)或者其他違規(guī)問題,請(qǐng)聯(lián)系本站處理。 舉報(bào)投訴
  • 轉(zhuǎn)換器
    +關(guān)注

    關(guān)注

    27

    文章

    8624

    瀏覽量

    146860
  • 驅(qū)動(dòng)器
    +關(guān)注

    關(guān)注

    52

    文章

    8154

    瀏覽量

    145995
  • DC-DC
    +關(guān)注

    關(guān)注

    30

    文章

    1925

    瀏覽量

    81470
  • 升壓
    +關(guān)注

    關(guān)注

    3

    文章

    210

    瀏覽量

    27284
  • 降壓
    +關(guān)注

    關(guān)注

    6

    文章

    255

    瀏覽量

    27052

原文標(biāo)題:如何使用GaNFET設(shè)計(jì)四開關(guān)降壓-升壓DC-DC轉(zhuǎn)換器?

文章出處:【微信號(hào):駿龍電子,微信公眾號(hào):駿龍電子】歡迎添加關(guān)注!文章轉(zhuǎn)載請(qǐng)注明出處。

收藏 人收藏

    評(píng)論

    相關(guān)推薦

    DC-DC降壓/升壓調(diào)節(jié)設(shè)計(jì)方案

      DC-DC開關(guān)轉(zhuǎn)換器的作用是將一個(gè)直流電壓有效轉(zhuǎn)換成另一個(gè)。高效率DC-DC轉(zhuǎn)換器采用三項(xiàng)基
    發(fā)表于 04-10 11:47 ?4392次閱讀
    <b class='flag-5'>DC-DC</b><b class='flag-5'>降壓</b>/<b class='flag-5'>升壓</b>調(diào)節(jié)<b class='flag-5'>器</b>設(shè)計(jì)方案

    正確運(yùn)用DC-DC降壓/升壓調(diào)節(jié)進(jìn)行設(shè)計(jì)

    DC-DC 開關(guān)轉(zhuǎn)換器的作用是將一個(gè)直流電壓有效轉(zhuǎn)換成另一個(gè)。高效率DC-DC轉(zhuǎn)換器采用三項(xiàng)基本
    發(fā)表于 04-18 11:08 ?2054次閱讀
    正確運(yùn)用<b class='flag-5'>DC-DC</b><b class='flag-5'>降壓</b>/<b class='flag-5'>升壓</b>調(diào)節(jié)<b class='flag-5'>器</b>進(jìn)行設(shè)計(jì)

    DC-DC轉(zhuǎn)換器電路圖 Boost升壓DC-DC轉(zhuǎn)換器的工作原理

    DC-DC轉(zhuǎn)換器分為三類:Boost升壓DC-DC轉(zhuǎn)換器、BUCK降壓
    發(fā)表于 09-19 11:25 ?3001次閱讀
    <b class='flag-5'>DC-DC</b><b class='flag-5'>轉(zhuǎn)換器</b>電路圖 Boost<b class='flag-5'>升壓</b>型<b class='flag-5'>DC-DC</b><b class='flag-5'>轉(zhuǎn)換器</b>的工作原理

    DC-DC轉(zhuǎn)換器

      DC-DC轉(zhuǎn)換器為轉(zhuǎn)變輸入電壓后有效輸出固定電壓的電壓轉(zhuǎn)換器DC/DC轉(zhuǎn)換器分為
    發(fā)表于 03-09 14:20

    DC-DC轉(zhuǎn)換器

      DC-DC轉(zhuǎn)換器為轉(zhuǎn)變輸入電壓后有效輸出固定電壓的電壓轉(zhuǎn)換器DC/DC轉(zhuǎn)換器分為
    發(fā)表于 04-19 11:43

    非隔離式的DC-DC轉(zhuǎn)換器解析

    結(jié)構(gòu),輸出電壓均低于輸入電壓,從而稱之為降壓DC-DC轉(zhuǎn)換器。  2.升壓DC-DC轉(zhuǎn)換器 
    發(fā)表于 12-09 15:28

    DC-DC升壓轉(zhuǎn)換器的資料分享

    描述DC-DC升壓轉(zhuǎn)換器DC to DC轉(zhuǎn)換器在電子發(fā)燒友中頗受歡迎,并在業(yè)界廣泛使用。非隔離式
    發(fā)表于 07-26 07:56

    DC-DC降壓-升壓轉(zhuǎn)換器12V/4A的資料分享

    描述DC-DC 降壓-升壓轉(zhuǎn)換器 12V/4A它的同步 DC-DC 降壓
    發(fā)表于 09-05 06:50

    兼具降壓升壓功能的四開關(guān)降壓-升壓轉(zhuǎn)換器參考設(shè)計(jì)

    描述 這種四開關(guān)降壓-升壓轉(zhuǎn)換器兼具降壓升壓功能,在模式之間實(shí)現(xiàn)平穩(wěn)過渡。它從22V-32V輸
    發(fā)表于 09-23 07:11

    ADP2503升壓/降壓DC-DC轉(zhuǎn)換器的性能及應(yīng)用

    ADP2503:600 mA,2.5 MHz降壓-升壓DC-DC轉(zhuǎn)換器
    的頭像 發(fā)表于 07-09 06:14 ?4326次閱讀

    升壓開關(guān)DC-DC電源轉(zhuǎn)換器

    升壓開關(guān)DC-DC電源轉(zhuǎn)換器資料下載。
    發(fā)表于 06-17 10:43 ?50次下載

    同步降壓/升壓轉(zhuǎn)換器LM5175的72W四開關(guān)降壓/升壓設(shè)計(jì)

    電子發(fā)燒友網(wǎng)站提供《同步降壓/升壓轉(zhuǎn)換器LM5175的72W四開關(guān)降壓/升壓設(shè)計(jì).zip》資料免
    發(fā)表于 09-06 09:57 ?13次下載
    同步<b class='flag-5'>降壓</b>/<b class='flag-5'>升壓</b><b class='flag-5'>轉(zhuǎn)換器</b>LM5175的72W<b class='flag-5'>四開關(guān)</b><b class='flag-5'>降壓</b>/<b class='flag-5'>升壓</b>設(shè)計(jì)

    四開關(guān)降壓/升壓轉(zhuǎn)換器參考設(shè)計(jì)

    電子發(fā)燒友網(wǎng)站提供《四開關(guān)降壓/升壓轉(zhuǎn)換器參考設(shè)計(jì).zip》資料免費(fèi)下載
    發(fā)表于 09-07 15:40 ?32次下載
    <b class='flag-5'>四開關(guān)</b><b class='flag-5'>降壓</b>/<b class='flag-5'>升壓</b><b class='flag-5'>轉(zhuǎn)換器</b>參考設(shè)計(jì)

    DC-DC轉(zhuǎn)換器電路圖 Boost升壓DC-DC轉(zhuǎn)換器的工作原理

    基于電感的儲(chǔ)能和釋放原理,以及開關(guān)管的開關(guān)控制。下面我們將詳細(xì)解析Boost升壓DC-DC轉(zhuǎn)換器的電路圖和工作原理。 一、Boost
    的頭像 發(fā)表于 01-19 18:28 ?2657次閱讀

    降壓DC-DC轉(zhuǎn)換器升壓DC-DC轉(zhuǎn)換器的輸出紋波差異

    關(guān)于降壓型和升壓DC-DC轉(zhuǎn)換器的輸出紋波差異,我們將分“降壓DC-DC
    的頭像 發(fā)表于 04-24 10:04 ?1514次閱讀
    <b class='flag-5'>降壓</b>型<b class='flag-5'>DC-DC</b><b class='flag-5'>轉(zhuǎn)換器</b>與<b class='flag-5'>升壓</b>型<b class='flag-5'>DC-DC</b><b class='flag-5'>轉(zhuǎn)換器</b>的輸出紋波差異