精品国产人成在线_亚洲高清无码在线观看_国产在线视频国产永久2021_国产AV综合第一页一个的一区免费影院黑人_最近中文字幕MV高清在线视频

0
  • 聊天消息
  • 系統(tǒng)消息
  • 評論與回復(fù)
登錄后你可以
  • 下載海量資料
  • 學(xué)習(xí)在線課程
  • 觀看技術(shù)視頻
  • 寫文章/發(fā)帖/加入社區(qū)
會員中心
創(chuàng)作中心

完善資料讓更多小伙伴認識你,還能領(lǐng)取20積分哦,立即完善>

3天內(nèi)不再提示

圖論的基本算法及性質(zhì)

算法與數(shù)據(jù)結(jié)構(gòu) ? 來源:未知 ? 作者:龔婷 ? 2018-03-13 10:49 ? 次閱讀

本篇主要涉及到圖論的基本算法,不包含有關(guān)最大流的內(nèi)容。圖論的大部分算法都是由性質(zhì)或推論得出來的,想樸素想出來確實不容易。

二分圖(Is-Bipartite)

一個圖的所有頂點可以劃分成兩個子集,使所有的邊的入度和出度頂點分別在這兩個子集中。

這個問題可以轉(zhuǎn)換為上篇提到過的圖的著色問題,只要看圖是否能著2個顏色就行了。當然,可以回溯解決這個問題,不過對于著2個顏色可以BFS解決。

同樣,一維數(shù)組colors表示節(jié)點已著的顏色。

偽代碼:

IS-BIPARTITE(g,colors)

let queue be new Queue

colors[0] = 1

queue.push(0)

while queue.empty() == false

let v = queue.top()

queue.pop()

for i equal to every vertex in g

if colors[i] == 0

colors[i] = 3 - colors[v]

queue.push(i)

else if colors[i] == colors[v]

return false

end

end

return true

時間復(fù)雜度:Θ(V+E),V表示頂點的個數(shù),E表示邊的個數(shù)

DFS改良(DFS-Improve)

上篇文章提到過,搜索解空間是樹形的,也就是在說BFS和DFS。那么在對圖進行BFS和DFS有什么區(qū)別呢,這個問題要從解空間角度去理解。對圖進行BFS的解空間是一顆樹,可叫廣度優(yōu)先樹。而DFS是多棵樹構(gòu)成的森林,可叫深度優(yōu)先森林。

這里要對DFS進行小小的改良,它的性質(zhì)會對解多個問題會很有幫助。原版DFS搜索的時候,會先遍歷本頂點,再遞歸遍歷臨接的頂點。DFS改良希望能先遞歸遍歷臨接的頂點,再遍歷本頂點,并且按遍歷順序逆序存儲起來。

偽代碼:

DFS-IMPROVE(v,visited,stack)

visited[v] = true

for i equal to every vertex adjacent to v

if visited[i] == false

DFS-IMPROVE(i,visited,stack)

end

stack.push(v)

這個改良版DFS有個很有用的性質(zhì)就是,對于兩個頂點A、B,存在A到B的路徑,而不存在B到A的路徑,則從記錄的順序中取出的時候,一定會先取出頂點A,再取出頂點B。以下為這個性質(zhì)的證明。

假設(shè):有兩個頂點A和B,存在路徑從A到B,不存在路徑從B到A。

證明:分為兩種情況,情況一,先搜索到A頂點,情況二,先搜索到B頂點。對于情況一,由命題可得,A一定存儲在B之后,那么取出時先取出的是頂點A。對于情況二,先搜索到B頂點,由于B頂點搜索不到A頂點,則A一定存儲在B之后,那么取出時仍先取出的是頂點A,命題得證。

DFS改良性質(zhì):對于兩個頂點A、B,存在A到B的路徑,而不存在B到A的路徑,則從記錄的順序中取出的時候,一定會先取出頂點A,再取出頂點B。

歐拉回路(Eulerian-Path-And-Circuit)

在無向圖中,歐拉路徑定義為,一條路徑經(jīng)過所有的邊,每個邊只經(jīng)過一次。歐拉回路定義為,存在一條歐拉路徑且路徑的起點和終點為同一個頂點。可以看到只有連通圖才能有歐拉回路和歐拉路徑。

這個算法很巧。如果一條路徑要經(jīng)過一個頂點,本質(zhì)是從一條邊到達一個頂點,然后從這個頂點通過另一條邊出去。歐拉回路就是要求路徑要經(jīng)過所有的點,起點和終點還都是同一個頂點。那么就等價于要求所有頂點連接的邊是2個。實際上,路徑還可以經(jīng)過頂點多次,那么就等價于要求所有頂點連接的邊是偶數(shù)個。歐拉路徑的要求就等價于所有頂點連接的邊是偶數(shù)個,除了起點和終點兩個頂點可以是奇數(shù)個。

先判斷圖是否是連通圖。返回0代表沒有歐拉回路或者歐拉路徑,返回1代表有歐拉路徑,返回2代表有歐拉回路。

偽代碼:

EULERIAN-PATH-AND-CIRCUIT(g)

if isConnected(g) == false

return 0

let odd = 0

for v equal to every vertex in g

if v has not even edge

odd = odd + 1

end

if odd > 2

returon 0

if odd == 1

return 1

if odd == 0

return 2

時間復(fù)雜度:Θ(V+E),V表示頂點的個數(shù),E表示邊的個數(shù)

拓撲排序(Topological-Sorting)

將一張有向無環(huán)圖的頂點排序,排序規(guī)則是所有邊的入度頂點要在出度頂點之前??梢钥吹?,無向和有環(huán)圖都不存在拓撲排序,并且拓撲排序可能存在多種解。

拓撲排序有兩種解法,一種是從搜索角度。

如果我能保障先遞歸遍歷臨接的頂點,再遍歷本頂點的話,那么遍歷的順序的逆序就是一個拓撲排序。那么就可以直接用DFS改良求解出拓撲排序。

偽代碼:

TOPOLOGICAL-SORTING-DFS(g)

let visited be new Array

let result be new Array

let stack be new Stack

for v equal to every vertex in g

if visited[v] == false

DFS-IMPROVE(v,visited,stack)

end

while stack.empty() == false

result.append(stack.top())

stack.pop()

end

return result

時間復(fù)雜度:Θ(V+E),V表示頂點的個數(shù),E表示邊的個數(shù)

另一種是貪心選擇。

直覺上,既然要所有邊的出度頂點在入度頂點之前,可以從入度和出度角度來解決問題。可以讓入度最小的排序在前,也可以讓出度最大的排序在后,排序后,這個頂點的邊都不會再影響問題了,可以去掉。去掉后再重新加入新的頂點,直到加入所有頂點。

這個問題還有個隱含條件,挑選出、入度最小的頂點就等價于挑選出、入度為0的頂點。這是因為圖必須是無環(huán)圖,所以肯定存在出、入度為0的頂點,那么出、入度最小的頂點就是出、入度為0的頂點。

直覺上這是一個可行的策略,細想一下,按出度最大排序和按入度為零排序是否等價。實際上是不等價的,按入度為零排序,如果出現(xiàn)了多個入度為零的頂點,這多個頂點排序的順序是無關(guān)的,可以任意排序。而按出度最大排序,出現(xiàn)了多個入度最大的頂點,這多個頂點排序是有關(guān)的,不能任意排序。所以,只能按入度為零排序。實際上,這個想法就是貪心選擇。下面以挑選入度為零的邊作為貪心選擇解決問題,同樣地,還是先證明這個貪心選擇的正確性。

命題:入度為零的頂點v排序在前。

假設(shè):S為圖的一個拓撲排序,l為此排序的首個頂點。

證明:如果l=v,則命題得證。如果l不等于v,將l頂點從S中去除,然后加入頂點v得到新的排序S‘。因為S去除l以后l以后的排序沒有變,仍為拓撲排序,v入度為零,v前面可以沒有頂點,所以S’也為圖的一個拓撲排序,命題得證。

偽代碼:

TOPOLOGICAL-SORTING-GREEDY(g)

let inDegree be every verties inDegree Array

let stack be new Stack

let result be new Array

for v equal to every vertex in g

if inDegree[v] == 0

stack.push(v)

end

while stack.empty() == false

vertex v = stack.top()

stack.pop()

result.append(v)

for i equal to every vertex adjacent to v

inDegree[i] = inDegree[i] - 1

if inDegree[i] == 0

stack.push(i)

end

end

return result.reverse()

時間復(fù)雜度:Θ(V+E),V表示頂點的個數(shù),E表示邊的個數(shù)

強連通分量(Strongly-Connected-Components)

圖中的一個頂點與另一個頂點互相都有路徑可以抵達,就說這兩個頂點強連通。圖中有多個頂點兩兩之間都強連通,則這多個頂點構(gòu)成圖的強連通分量。

樸素的想法是,假如從一個頂點A可以搜索到另一個頂點B,如果從B頂點再能搜索回A頂點的話,A、B就在一個強連通分量中。不過,這樣每兩個頂點要進行兩次DFS,復(fù)雜度肯定會很高。這里可以引入轉(zhuǎn)置圖(將有向邊的方向翻轉(zhuǎn))的性質(zhì)。這樣問題就轉(zhuǎn)換成了,從A頂點搜索到B頂點,將圖轉(zhuǎn)置后,如果再A頂點還能搜索到B頂點,A、B頂點就在一個強連通分量中。用算法表述出來就是先從A頂點DFS,然后將圖轉(zhuǎn)置,再從A頂點DFS,兩次DFS都能搜索到B頂點的話,B頂點就與A頂點在同一個強連通分量中。然而樸素想法只能想到這里了。

有多個算法被研究出來解決這個問題,下面先介紹Kosaraju算法。

Kosaraju

Kosaraju算法使用了DFS改良的性質(zhì)去解決問題,想法很有趣。Kosaraju算法現(xiàn)將圖進行DFS改良,然后將圖轉(zhuǎn)置,再進行DFS。第二次DFS每個頂點能夠搜索到的點就是一個強連通分量。算法正確性和說明如下。

通過DFS改良性質(zhì)可以得出定理,一個強連通分量C如果有到達另一個強連通分量C’的路徑,則C’比C先被搜索完,這個定理很明顯,如果C中有路徑到C’,那么根據(jù)DFS改良性質(zhì)一定會先搜索到C,再搜索完C’,再搜索完C。將這個定理做定理1。

定理1:一個強連通分量C如果有到達另一個強連通分量C’的路徑,則C’比C先被搜索完。

定理1還可以再進行推論,如果一個強連通分量C有到達另一個強連通分量C’的路徑,則將圖轉(zhuǎn)置后,C比C’先被搜索完,這個推論也很明顯,將圖轉(zhuǎn)置后,不存在C到C’的路徑,存在C’到C的路徑,而仍是先搜索C再搜索C‘,所以C比C‘先被搜索完,這個推論作為推論1。

推論1:如果一個強連通分量C有到達另一個強連通分量C’的路徑,則將圖轉(zhuǎn)置后,C比C’先被搜索完。

以下為用結(jié)構(gòu)歸納法對算法正確性進行證明。

命題:第二次DFS每個頂點能夠搜索到的點就是一個強連通分量。

假設(shè):n代表圖中有多少個強連通分量。

證明:如果n=1,則第二次DFS就是搜索一遍所有頂點,命題得證。現(xiàn)在假設(shè)n=k時,命題成立?,F(xiàn)證明n=k+1時,是否成立。假設(shè)搜索到第k+1個強連通分量的第一個頂點為u,u肯定能搜索到所有k+1個強連通分量的頂點。并且根據(jù)推論1,此時被轉(zhuǎn)置后的圖,所有從第k+1個強連通分量能到達的其他強連通分量都已經(jīng)被搜索過了。所以u只能搜索到所有第k+1個強連通分量的頂點,即第二次DFS每個頂點只能夠搜索到包含此頂點的強連通分量中的頂點,命題得證。

偽代碼:

KOSARAJU-STRONGLY-CONNECTED-COMPONENTS(g)

let visited be new Array

let stack be new Stack

for v equal to every vertex in g

if visited[v] == false

DFS-IMPROVE(v,visited,stack)

end

let gt = transpose of g

for v equal to every vertex in g

visited[v] = false

end

while stack.empty() == false

vertex v = stack.top()

stack.pop()

if visited[v] == false

DFS(v,visited)

print ' Found a Strongly Connected Components '

end

DFS(v,visited)

visited[v] = true

print v

for i equal to every vertex adjacent to v

if visited[i] == false

DFS(i,visited,stack)

end

時間復(fù)雜度:Θ(V+E),V表示頂點的個數(shù),E表示邊的個數(shù)

Kosaraju算法需要進行兩次DFS,那么可不可以只進行一次DFS,邊遍歷邊找強連通分量?Tarjan就是這樣的算法。

Tarjan

同樣,還是要基于DFS搜索性質(zhì)來思考問題。DFS創(chuàng)建出的深度優(yōu)先搜索樹會先被訪問根節(jié)點再被訪問子孫節(jié)點。什么時候會出現(xiàn)強連通分量?只有子孫節(jié)點有連通祖先節(jié)點的邊的時候。如果從某個節(jié)點,其子孫節(jié)點都只有指向自己子孫節(jié)點的邊的時候,這是明顯沒有構(gòu)成強連通分量的。那么,出現(xiàn)了子孫節(jié)點指向其祖先節(jié)點的時候,從被指向的祖先節(jié)點一直搜索到指向的子孫節(jié)點所經(jīng)過所有頂點就構(gòu)成了一個強連通分量。如果出現(xiàn)了多個子孫節(jié)點都指向了祖先節(jié)點怎么辦?最早被指向、訪問的祖先節(jié)點到最晚指向、訪問的子孫節(jié)點構(gòu)成了“最大“的強連通分量,這才是想要找的強連通分量。如果遇到了一個指向祖先節(jié)點的子孫節(jié)點,就算構(gòu)成一個強連通分量,會導(dǎo)致找到多個互相嵌套的強連通分量。那么,要記錄訪問順序就要為每個節(jié)點設(shè)置一個被訪問順序的編號,讓屬于同一個強連通分量的頂點編號一致。上面討論的是構(gòu)成了一個強連通分量怎么處理,如果沒有多個節(jié)點構(gòu)成的強連通分量怎么處理?在搜索節(jié)點之前,為這個節(jié)點默認設(shè)置上被訪問的順序編號,這樣如果沒有搜索到多個節(jié)點構(gòu)成的強連通分量,每個節(jié)點就是自己的強連通分量。

算法表述為,從某個節(jié)點開始搜索,默認設(shè)置自己為一個強連通分量。只要節(jié)點有子孫節(jié)點,就要等待子孫節(jié)點都搜索完,再更新自己強連通分量信息。只要節(jié)點有指向祖先節(jié)點,也要更新自己的強連通分量。判斷子孫節(jié)點構(gòu)成的強連通分量”大“還是自己構(gòu)成的強連通分量”大“,自己屬于最”大“的強連通分量。也就是說,算法找出了所有頂點的所屬的最“大”強連通分量。

數(shù)組disc表示頂點被訪問順序的編號,數(shù)組low表示頂點所在的強連通分量編號。最后當頂點在disc和low中編號一致時,代表頂點是所在強連通分量中第一個被搜索到的頂點。此時,輸出所在的強連通分量所包括的頂點。

偽代碼:

TARJAN-STRONGLY-CONNECTED-COMPONENTS(g)

let disc be new Array

let low be new Array

let stack be new Stack

let isInStack be new Array

for i from 1 to the number of vertex in g

disc [i] = -1

low [i] = -1

end

for u from 1 to the number of vertex in g

if disc[i] != -1

TARJAN-STRONGLY-CONNECTED-COMPONENTS-UTIL(u,disc,low,stack,isInStack)

end

TARJAN-STRONGLY-CONNECTED-COMPONENTS-UTIL(u,disc,low,stack,isInStack)

let time be static

time = time + 1

disc[u] = low[u] = time

stack.push(u)

isInStack[u] = true

for v equal to every vertex adjacent to u

if disc[v] == -1

TARJAN-STRONGLY-CONNECTED-COMPONENTS-UTIL(v,disc,low,stack,isInStack)

low[u] = min(low[u],low[v])

else if isInStack[v] == true

low[u] = min(low[u],disc[v])

end

let w = 0

if low[u] == disc[u]

while stack.top() != u

w = stack.top()

isInStack[w] = false

stack.pop()

print w

end

w = stack.top()

isInStack[w] = false

stack.pop()

print w

print ' Found a Strongly Connected Components '

時間復(fù)雜度:Θ(V+E),V表示頂點的個數(shù),E表示邊的個數(shù)

圖的割點(Articulation Points)、橋(Bridge)、雙連通分量(Biconnected Components)

圖的割點(Articulation-Points)

圖的割點也叫圖的關(guān)節(jié)點,定義為無向圖中分割兩個連通分量的點,或者說去掉這個點,圖中的連通分量數(shù)增加了??梢钥吹饺绻蟪隽诉B通分量,那么不同連通分量中間的頂點就是割點。什么時候某個頂點不是這樣的割點?如果這個頂點的子孫頂點有連接這個頂點祖先頂點的邊,那么去掉這個頂點,這個頂點的子孫頂點和祖先頂點仍然連通。那么,尋找割點的過程就等價于尋找子孫頂點沒有連接祖先頂點的頂點。這個問題的求解過程類似于Tarjan強連通分量的求解過程。

不過,這個問題有個例外就是根頂點,對一般頂點的處理方式處理根頂點行得通嗎?根頂點肯定沒有子孫頂點指向祖先頂點,但是根頂點可以是割點。所以,根頂點需要特殊處理。根頂點什么時候是割點?當根頂點有多顆子樹,且之間無法互相到達的時候。那么,存不存在根頂點有多顆子樹,且之間可以互相到達?不存在,如果互相之間可以到達,那在根頂點搜索第一顆子樹的時候,就會搜索到可到達的子樹,就不會存在多顆子樹了。所以,根頂點有多顆子樹,那么這多顆子樹之間一定無法互相到達。根頂點有多顆子樹,且之間無法互相到達的時候就等價于根頂點有多顆子樹。所以,只要根頂點有多顆子樹,那么根頂點就是割點。

同樣地,數(shù)組disc表示頂點被訪問順序的編號,數(shù)組low表示頂點所在的強連通分量編號。數(shù)組parent找出根頂點。

偽代碼:

ARTICULATION-POINTS(g)

let disc be new Array

let low be new Array

let result be new Array

let parent be new Array

let visited be new Array

for i from 1 to the number of vertex in g

result [i] = false

visited [i] = false

parent [i] = -1

end

for u from 1 to the number of vertex in g

if visited[i] == false

ARTICULATION-POINTS-UTIL(u,disc,low,result,parent,visited)

end

for i from 1 to the number if vertex in g

if result[i] == true

print ' Found a Articulation Points i '

end

ARTICULATION-POINTS-UTIL(u,disc,low,result,parent,visited)

let time be static

time = time + 1

let children = 0

disc[u] = low[u] = time

visited[u] = true

for v equal to every vertex adjacent to u

if visited[v] == false

children = children + 1

parent[v] = u

ARTICULATION-POINTS-UTIL(u,disc,low,result,parent,visited)

low[u] = min(low[u],low[v])

if parnet[u] == -1 and children > 1

result[u] = true

if parent[u] != -1 and low[v] >= disc[u]

result[u] = true

else if v != parent[u]

low[u] = min(low[u],disc[v])

end

時間復(fù)雜度:Θ(V+E),V表示頂點的個數(shù),E表示邊的個數(shù)

橋(Bridge)

橋定義為一條邊,且去掉這個邊,圖中的連通分量數(shù)增加了。類似于尋找割點,尋找橋就是尋找這樣一條,一端的頂點的子孫頂點沒有連接這個頂點和其祖先頂點的邊。求解過程和求割點基本一致。

偽代碼:

BRIDGE(g)

let disc be new Array

let low be new Array

let parent be new Array

let visited be new Array

for i from 1 to the number of vertex in g

visited [i] = false

parent [i] = -1

end

for u from 1 to the number of vertex in g

if visited[i] == false

BRIDGE-UTIL(u,disc,low,parent,visited)

end

BRIDGE-UTIL(u,disc,low,parent,visited)

let time be static

time = time + 1

disc[u] = low[u] = time

for v equal to every vertex adjacent to u

if visited[v] == false

parent[v] = u

BRIDGE-UTIL(u,disc,low,parent,visited)

low[u] = min(low[u],low[v])

if low[v] > disc[u]

print ' Found a Bridge u->v '

else if v != parent[u]

low[u] = min(low[u],disc[v])

end

時間復(fù)雜度:Θ(V+E),V表示頂點的個數(shù),E表示邊的個數(shù)

雙連通分量(Biconnected-Components)

雙連通圖定義為沒有割點的圖。雙連通圖的極大子圖就為雙連通分量。雙連通分量就是在割點分割成多個連通分量處,共享割點。也就是說雙連通分量是去掉割點后構(gòu)成的連通分量,加上割點和到達割點的邊??梢钥闯觯p連通分量可分為不含有割點、一個割點、兩個割點三種情況。對于不含有割點,說明圖為雙連通圖。對于含有一個割點,可能為初始搜索的頂點到第一個割點之間的邊構(gòu)成的雙連通分量,可能為遇到一個割點后到不再遇到割點之間的邊構(gòu)成雙連通分量。對于含有兩個割點,兩個割點之間的邊構(gòu)成了一個雙連通分量。

求解此問題,只要在求割點的算法上做更改就可以了。按照求割點的算法求解割點,找到一個割點,輸出找到的邊,然后刪除找到的邊的記錄,再去搜索下一個割點。每搜索完圖某個頂點的可達頂點,輸出找到的邊。這樣就涵蓋了所有的情況。

偽代碼:

BICONNECTED-COMPONENTS(g)

let disc be new Array

let low be new Array

let stack be new Stack

let parent be new Array

for i from 1 to the number of vertex in g

disc [i] = -1

low [i] = -1

parent [i] = -1

end

for u from 1 to the number of vertex in g

if disc[i] == -1

BICONNECTED-COMPONENTS-UTIL(u,disc,low,stack,parent)

let flag = flase

while stack.empty() == false

flag = true

print stack.top().src -> stack.top().des

stack.pop()

end

if flag == true

print ' Found a Bioconnected-Components '

end

BICONNECTED-COMPONENTS-UTIL(u,disc,low,stack,parent)

let time be static

time = time + 1

let children = 0

disc[u] = low[u] = time

for v equal to every vertex adjacent to u

if disc[v] == -1

children = children + 1

parent[v] = u

stack.push(u->v)

BICONNECTED-COMPONENTS-UTIL(u,disc,low,stack,parent)

low[u] = min(low[u],low[v])

if (parnet[u] == -1 and children > 1) or (parent[u] != -1 and low[v] >= disc[u])

while stack.top().src != u or stack.top().des != v

print stack.top().src -> stack.top().des

stack.pop()

end

print stack.top().src -> stack.top().des

stack.pop()

print ' Found a Bioconnected-Components '

else if v != parent[u] and disc[v] < low[u]

low[u] = min(low[u],disc[v])

stack.push(u->v)

end

時間復(fù)雜度:Θ(V+E),V表示頂點的個數(shù),E表示邊的個數(shù)

最小生成樹(Minimum-Spanning-Tree)

生成樹是指,在一個連通、無向、有權(quán)的圖中,所有頂點構(gòu)成的一顆樹。圖中可以有多顆生成樹,而生成樹的代價就是樹中所有邊的權(quán)重的和。最小生成樹就是生成樹中代價最小的。

樸素的想法就是從圖中選擇最小權(quán)重的邊,直到生成一顆樹??赐ㄓ玫乃惴ㄖ?,同樣要討論一下最小生成樹的性質(zhì)。

對于一個連通、無向、有權(quán)圖中,一定有最小生成樹。如果圖不包含最小生成樹的任意一條邊,那么圖就是不連通的了,這與已知連通圖不符,所以圖必包含最小生成樹。

假設(shè),A為某個最小生成樹的子集(任意一個頂點都是最小生成樹的子集)。

那么,為A一直添加對的邊,A最后就會成為一顆最小生成樹。那么最小生成樹問題就轉(zhuǎn)換成為了,一直找到對的邊,直到成為一顆最小生成樹。這個對的邊可以叫做安全邊。

安全邊如何尋找顯然就成了解決這個問題的關(guān)鍵點。

再假設(shè),圖中所有頂點為V,將所有頂點切割成兩個部分S和V減去S。所有連接這兩個部分的邊,很形象的叫做橫跨切割,這些邊橫跨了兩個部分,成為這兩個部分的橋梁。這里還有個問題,如何切割?使A不包含橫跨切割。這樣的切割有多種切法,切割后,橫跨切割的最小代價邊就為A的安全邊。將這個作為定理1。

定理1:存在這樣一個將所有頂點分成兩個部分的切割,且使某個最小生成樹子集A不包含橫跨切割。則橫跨此切割的最小代價邊,就是A的安全邊。

以下為此定理的證明,這個定理的基礎(chǔ)實際上是連通性。

命題:橫跨切割的最小代價邊為A的安全邊。

假設(shè):橫跨切割后的最小代價邊為x,有最小生成樹T包含A,但是不包含x。

證明:既然T不包含x,那么T必須包含另一條連接x兩端頂點的路徑,這條路徑上又必須有條邊橫跨切割。假設(shè)這條邊為y。T將y減去后,x兩端的頂點就無法互相到達。這時如果再加上x,那么x兩端的頂點又可以互相到達,并且構(gòu)造了另一顆生成樹T’??梢钥吹?,x的代價小于或等于y的代價,那么T‘的代價也小于或等于T的代價,那么T’也就是一顆最小生成樹。那么x既不在A中,x又在一顆包含A的最小生成樹中。命題得證。

可以看到這個證明過程使用的就是經(jīng)常拿來證明貪心選擇的技巧,也就是說最小生成樹問題符合貪心算法的特征,也就解釋了為什么下面將要提到的兩個算法都是貪心算法。

定理1還可以進行推論,既然切割有多種方法,那可不可以對A和其余的頂點進行切割,設(shè)B為包括A和所有頂點構(gòu)成的一個森林,C是其中的一個連通分量,那么C連接其他的連通分量的最小代價邊是A的安全邊。這個推論很好證明,因為A是B中的一個或者多個連通分量,如果按照C去切割圖分成C和B減去C,不可能切割A(yù),即A中必定不包含橫跨切割。那么,橫跨這個切割的最小代價邊就是安全邊,即C連接其他連通分量的最小代價邊,推論成立。將這個推論作為推論1。

推論1:某個最小生成樹子集A和其他頂點構(gòu)成的森林中,任意一個連通分量連接其他連通分量的最小代價邊都為A的安全邊。

如果從所有不在A中的邊選擇最小代價的邊,這個邊一定連接著某個連通分量,這個推論也就將選安全邊的范圍拓展到任意一條不在A中的邊。這個推論正好可以證明樸素想法的正確性。

接下來看一下最小生成樹的三個通用的算法Kruskal、Prime、Boruvka。

Kruskal

樸素想法和Kruskal已經(jīng)很接近了。Kruskal算法做的就是一直選擇代價最小的邊,不過,如果選擇這個邊后,無生成最小生成樹,而生成圖了怎么辦?Kruskal比樸素想法巧的地方就是不選擇會成環(huán)的邊。

Kruskal常用的檢查是否成環(huán)的數(shù)據(jù)結(jié)構(gòu)是UnionFind(并查集),UnionFind有個操作,一個是Find檢查元素所在集合的編號,Union將兩個元素合并成一個集合。

KRUSKAL(g)

let edges be all the edges of g

sort(edges)

let uf be new UnionFind

let e = 0

let i = 0

let result be new Array

while e < edges.length()

let edge = edges[i]

i = i + 1

if uf.find(edge.src) != uf.find(edge.des)

result.append(edge)

e = e + 1

uf.union(edge.src,edge.des)

end

return result

V表示頂點的個數(shù),E表示邊的個數(shù),排序E個邊加上E次UnionFind操作

時間復(fù)雜度:O(Elog2E+Elog2V)

Prim

有了推論1,Prim算法的正確性理解起來就很簡單了,一直只對最小生成樹子集進行切割,然后選擇出最小生成樹子集與其他連通分量的最小代價邊就OK了。Prim算法就是一直選擇最小生成樹子集與其他頂點連接的最小代價邊。

Prim算法維持這樣一個最小堆,存儲最小生成樹子集以外的頂點,與最小生成樹子集臨接的頂點的權(quán)重是其臨接邊的值,其余的最小堆中的頂點權(quán)重都是無窮。Prim算法初始將起始頂點在最小堆中的權(quán)重置為0,其余的頂點置為無窮。然后從最小堆中一直取權(quán)重最小的頂點,即選擇最小代價邊加入最小生成樹,如果取出的頂點的臨接頂點不在最小生成樹中,且這個臨接頂點在最小堆中的權(quán)重比邊大,則更新臨接頂點在最小堆的權(quán)重,直到從最小堆中取出所有的頂點,就得到了一顆最小生成樹。

偽代碼:

PRIM(g,s)

let heap be new MinHeap

let result be new Array

for i from 1 to the number of vertex in g

let vertex be new Vertex(i)

vertex.weight = INT_MAX

heap.insert(vertex)

end

heap.decrease(s,0)

while heap.empty() == false

vertex v = heap.top()

for u equal to every vertex adjacent to v

if heap.isNotInHeap(u) and v->u < heap.getWeightOfNode(u)

result[u] = v

heap.decrease(u,v->u)

end

end

return result

V表示頂點的個數(shù),E表示邊的個數(shù),對V個頂點和E條邊進行decrease操作

時間復(fù)雜度:O(Elog2V+Vlog2V)

Boruvka

Kruskal是根據(jù)所有邊中最小代價邊的一端的連通分量分割,Prim根據(jù)最小生成子樹的子集分割,Boruvka根據(jù)所有的連通分量分割,實際上都是基于推論1。Boruvka算法將所有連通分量與其他連通分量的最小代價邊選擇出來,然后將這些邊中未加入最小生成樹子集的加進去,一直到生成最小生成樹。

Boruvka算法同樣使用了UnionFind去記錄連通分量,用cheapest數(shù)組記錄連通分量與其他連通分量連接的最小代價邊的編號。

偽代碼:

Boruvka(g)

let uf be new UnionFind

let cheapest be new Array

let edges be all the edge of g

let numTree = the number of vertex in g

let result be new Array

for i from 1 to number of vertex in g

cheapest[i] = -1

end

while numTree > 0

for i from 1 to the number of edge in g

let set1 = uf.find(edges[i].src)

let set2 = uf.find(edges[i].des)

if set1 == set2

continue

if cheapest[se1] == -1 or edges[cheapest[set1]].weight > edges[i].weight

cheapest[set1] = i

if cheapest[set2] == -1 or edges[cheapest[set2]].weight > edges[i].weight

cheapest[set2] = i

end

for i from 1 to the number of vertex in g

if cheapest[i] != -1

let set1 = uf.find(edges[cheapest[i]].src)

let set2 = uf.find(edges[cheapest[i]].des)

if set1 == set2

continue

result[edges[cheapest[i]].src] = edges[cheapest[i]].des

uf.union(set1,set2)

numTree = numTree - 1

end

end

return result

時間復(fù)雜度:O(Elog2V),V表示頂點的個數(shù),E表示邊的個數(shù)

單源最短路徑(Single-Source-Shortest-Paths)

給出一張連通、有向圖,找出一個頂點s到其他所有頂點的最短路徑??梢钥吹剑绻麍D中存在負環(huán),不存在最短路徑。因為存在負環(huán)就可以無限循環(huán)負環(huán)得到更短的路徑。

看通用的算法之前,同樣要討論一下問題的性質(zhì)。

假設(shè),存在一條頂點s到頂點v的最短路徑,i、j為路徑上的兩個頂點。那么在這條s到v最短路徑上,i到j(luò)的路徑是否是i到j(luò)的最短路徑?是的,如果存在i到j(luò)的更短路徑,就等價于存在一條s到v的更短路徑,這與假設(shè)不符。也就是說,如果存在一條從s到v的最短路徑,這條路徑上任意兩個頂點的路徑都是這兩個頂點的最短路徑。那么,這個問題就具有動態(tài)規(guī)劃的狀態(tài)轉(zhuǎn)移特征。

解決此問題的樸素想法就是求出所有頂點s到頂點v的路徑,然后取最小值。那么要是實現(xiàn)這個步驟,就要為v點存儲一個估計值d,并設(shè)起始為無窮,如果有到達v的路徑小于這個估計值,更新這個估計值,并且記錄v的現(xiàn)階段最小路徑。這步操作叫做松弛操作(relax)。假設(shè)u為小于估計值路徑上的上個頂點。

RELAX(u,v,result)

if v.d > u.d + u->v

v.d = u.d + u->v

result[v] = u

那么,算法要做的就是一直松弛到達v頂點的路徑,從無窮直到最小路徑??梢钥吹?,所有的求最短路徑的算法都要基于這個操作去求解,不同的算法只能就是執(zhí)行這個操作順序不同或者次數(shù)不同。那么松弛操作會不會出問題,會不會松弛操作做過頭了,將v的估計值松弛的比最短路徑還小?不會,在算法運行期間,對于所有頂點,一直對頂點進行松弛操作,頂點的預(yù)估值不會低于最短路徑。以下用結(jié)構(gòu)證明法證明。

假設(shè):u代表任意一個連接v的頂點,s->v代表s到v的邊,s~>v代表s到v的最短路徑。

命題:對到達v的所有路徑松弛操作有v.d >= s~>v

證明:

對于v=s的情況,v.d=0 s~v即s~s也為0,命題得證

假設(shè)對于頂點u,u.d >= s~>u成立。

有s~>v <= s~>u + u->v,因為s~>v是一條最短路徑,對于任意一條經(jīng)過u到達v的路徑,必小于最短路徑。

s~>v <= u.d + u->v

因為經(jīng)過松弛操作v.d = u.d + u->v,所以v.d >= s~>v,命題得證。

松弛操作只能同時對一條邊起作用。所以,最短路徑長為n的路徑,只能從最短路徑長為n-1的路徑,轉(zhuǎn)移過來。這里就得到了這個問題最重要的性質(zhì),單源最短路徑問題是個最短路徑每次遞增一的動態(tài)規(guī)劃問題。

單源最短路徑性質(zhì):此問題是個最短路徑每次長度遞增一的動態(tài)規(guī)劃問題。

在介紹通用算法之前,先介紹一種專對于有向無環(huán)圖很巧的算法。

有向無環(huán)圖單源最短路徑(DAG-Shortest-Paths)

對于有向無環(huán)圖,可以先對圖進行拓撲排序,然后按拓撲排序的順序?qū)γ總€頂點作為出度的邊進行松弛操作,就得到了問題的一個解。以下證明算法的正確性。

假設(shè)v為對圖拓撲排序后的某個頂點。當對v作為出度的邊進行松弛操作前,所有能到達v的路徑都已經(jīng)做過了松弛操作,此時已經(jīng)找到了到達v的最短路徑。那么,當對所有頂點作為出度的邊進行松弛操作后,所有頂點的最短路徑就已經(jīng)被找到。算法的正確性得到證明。

偽代碼:

DAG-SHORTEST-PATHS(g)

let sorted = TOPOLOGICAL-SORTING-GREEDY(g)

let result be new Array

for u equal to every vertex in sorted

for v equal to every vertex adjacent to u

if v.d > u.d + u->v

RELAX(u,v,result)

end

end

return result

時間復(fù)雜度:Θ(V+E),V表示頂點的個數(shù),E表示邊的個數(shù)

接下來介紹兩種通用的算法Bellman-Ford和Dijkstra。Bellman-Ford和Dijkstra有什么聯(lián)系呢?Bellman-Ford可以解決有負權(quán)重圖的單源最短路徑問題,并且可以偵測出圖中是否存在負環(huán)。Dijkstra只能解決沒有負權(quán)重邊的圖的單源最短路徑問題。Bellman-Ford是進行必須的最少次數(shù)的松弛操作。而Dijkstra發(fā)現(xiàn),只要沒有負權(quán)重邊,還能進行更少的松弛操作解決問題。

Bellman-Ford

Bellman-Ford是最通用的解決單源最短路徑算法,初始將所有頂點估計值設(shè)為無窮,將源點設(shè)為零。然后,對所有邊進行松弛操作,這個步驟作為內(nèi)部循環(huán)。再將這個步驟做圖的頂點個數(shù)減一次。

Bellman-Ford的正確性不難證明,可以看到隨著Bellman-Ford算法內(nèi)部的循環(huán),Bellman-Ford找到的最短路徑的長度也在增加。首先證明內(nèi)部循環(huán)在循環(huán)到第n次時,找到了所有最短路徑長為n的路徑。我們用結(jié)構(gòu)證明法。在以下證明中,可以看出Bellman-Ford雖然不是經(jīng)典的動態(tài)規(guī)劃算法,但是其原理是基于這個問題的動態(tài)規(guī)劃性質(zhì)的。

證明:

對于n=0時,最短路徑為0,命題得證。

假設(shè)所有最短路徑為n-1的路徑已經(jīng)被找到。因為根據(jù)單源最短路徑的動態(tài)規(guī)劃性質(zhì),最短路徑長為n的路徑,可以從最短路徑長為n-1的路徑,轉(zhuǎn)移過來的。因為Bellman-Ford算法會對所有的邊進行松弛操作。所以,所有長為n的最短路徑會從相應(yīng)的長為n-1的最短路徑找到。命題得證。

只要最短路徑上不存在負環(huán),那么所有最短路徑就必小于V-1。所以,Bellman-Ford內(nèi)部循環(huán)執(zhí)行V-1次,能找到最長的最短路徑,也就是能找到所有的最短路徑。Bellman-Ford正確性證畢。

Bellman-Ford實現(xiàn)也很簡單,這里添加一個flag位,提前省去不必要的循環(huán)。

偽代碼:

BELLMAN-FORD(g,s)

let edges be all the edge of g

let result be new Array

for i from 1 to the number of vertex of g

result[i] = INT_MAX

end

result[s] = 0

for i from 1 to the number of vertex of g minus 1

let flag = false

for j from 1 to the numnber of edge of g

let edge = edges[j]

if result[edge.src] != INT_MAX and edge.src > edge.des + edge.weight

RELAX(u,v,result)

flag = true

end

if flag == false

break

end

return result

時間復(fù)雜度:O(V?E),V表示頂點的個數(shù),E表示邊的個數(shù)

為什么Bellman-Ford算法可以偵測出有負環(huán)?算法完成后再對圖的所有邊進行一次松弛操作,如果最短路徑求得的值改變了,就是出現(xiàn)了負環(huán)。這個證明看一下松弛操作的定義就行了。根據(jù)松弛操作的性質(zhì),頂點的估計在等于最短路徑后不會再改變了,如果改變了就是出現(xiàn)了負環(huán),從而沒有得到最短路徑。

Dijkstra

Dijkstra是個貪心算法,樸素的想一下,用貪心算法怎么解決問題。既然沒有負權(quán)邊,選出當前階段最短的路徑,這個路徑就應(yīng)該是到達這個路徑終點的最短路徑。

Dijkstra就是這樣一個貪心算法,初始將所有頂點估計值設(shè)為無窮,將源點設(shè)為零。維護一個集合S代表已經(jīng)找到的最短路徑頂點,然后從集合S外所有頂點,選擇有最小的估計值的頂點加入到集合中,然后再對這個頂點在S中的臨接頂點做松弛操作,一直到所有頂點都在集合S中。

Dijkstra的貪心選擇使用簡單的反證法就可以證出。

假設(shè),現(xiàn)階段要選從s到某個頂點u的路徑作為最短路徑加入到集合S中,并且這個選擇是錯誤的。有另一條最短路徑從s到達u,那么這條路徑和原選擇的路徑肯定不一致,經(jīng)過不同的頂點,假設(shè)這條最短路徑上到達u的前一個頂點為k,既然這是一條從s到達u的最短路徑,那么從s到k肯定比從s到v小,那么算法會先選擇從s到k,然后選擇最短路徑,不會選擇假設(shè)的路徑,這與假設(shè)矛盾,假設(shè)不成立,貪心選擇正確性得證。

以下是算法導(dǎo)論上的證明,嘗試從實際發(fā)生了什么去證明正確性,我認為有點clumsy(笨重),核心的想法其實和上面簡單的反證法一致。

命題:選擇有最小估計值的頂點加入集合S,那么這個估計值必定是這個頂點的最小路徑。

同樣使用反證法來證,并且關(guān)注已經(jīng)選擇了最小預(yù)估值的頂點但還沒加入頂點S時的情形。

假如選擇了頂點u,這時,將從s到u作為最小條路徑加入到S中,分為兩種情況。情況一,選擇的從s到u的路徑就是最短路徑,那么命題已經(jīng)得證。情況二,選擇的從s到u的路徑不是最短路徑,存在u.d>s~>u。這種情況下,可以找到一個頂點x,使得x在集合S中,并在對x進行松弛操作后,找到另一個頂點y,使得y不在集合中且y的估計值就等于s到y(tǒng)的最短路徑即s~>y。x可以與s重合,y可以與u重合。

那么有y.d = s~>y

因為從s到y(tǒng)是從s到u的子路徑,有s~>u >= s~>y

得出s~>u >= y.d

因為選擇了頂點u,有u.d <= y.d

得出s~>u >= u.d

這與假設(shè)矛盾,所以假設(shè)不成立,命題得證。

實現(xiàn)和時間復(fù)雜度與Prim算法類似,集合S用最小堆實現(xiàn)。

偽代碼:

DIJKSTRA(g,s)

let heap be new MinHeap

let result be new Array

for i from 1 to the number of vertex in g

let vertex be new Vertex(i)

vertex.d = INT_MAX

heap.insert(vertex)

end

heap.decrease(s,0)

while heap.empty() == false

vertex u = heap.top()

for v equal to every vertex adjacent to u

if heap.isNotInHeap(v) and u.d v.d > u.d + u->v

RELAX(u,v,result)

heap.decrease(v,v.d)

end

end

return result

V表示頂點的個數(shù),E表示邊的個數(shù),對V個頂點和E條邊進行decrease操作

時間復(fù)雜度:O(Elog2V+Vlog2V)

可以看到,如果運氣好,Bellman-Ford不需要V次循環(huán)就可以找到所有最短路徑,但是運氣不好,Bellman-Ford要經(jīng)過最少V次循環(huán),這就是上文說到的,Bellman-Ford是進行必須的最少次數(shù)的松弛操作。而如果不存在負權(quán)重邊,Dijkstra可以進行更少次的松弛操作,至多對每個頂點連接的邊進行一次松弛操作就可以了,Bellman-Ford與Dijkstra的聯(lián)系實際上就是動態(tài)規(guī)劃與貪心算法的聯(lián)系。Bellman-Ford和Dijkstra算法本質(zhì)都是單源最短路徑性質(zhì)。

全對最短路徑(All-Pair-Shortest-Paths)

全對最短路徑就是將圖中任意兩點之間的最短路徑求出來,輸出一個矩陣,每個元素代表橫坐標作為標號的頂點到縱坐標作為標號的頂點的最短路徑。當然,可以對所有頂點運行一次Bellman-Ford算法得出結(jié)果,不過這樣的復(fù)雜度就太高了。嘗試去找到更好的算法解決這個問題。

既然單源最短路徑是個最短路徑遞增一的動態(tài)規(guī)劃問題,嘗試對全對最短路徑使用這種性質(zhì),然后看看能不能降低復(fù)雜度。

假設(shè)有n個頂點,dpij代表從頂點i到頂點j的最短路徑,假設(shè)這條最短路徑長為m,且k為任意頂點。那么,根據(jù)這個問題的動態(tài)規(guī)劃狀態(tài)轉(zhuǎn)移特征,dpij是由長度為m?1的dpik加上k->j轉(zhuǎn)移過來的。

看來即使在單源最短路徑動態(tài)規(guī)劃的性質(zhì)上進行求解,復(fù)雜度仍然很高。

嘗試不從最短路徑長度角度考慮動態(tài)規(guī)劃,從頂點角度去考慮動態(tài)規(guī)劃,引出一個通用的算法Floyd-Warshall。

Floyd-Warshall

好,從頂點的角度去思考動態(tài)規(guī)劃。從頂點i到頂點j要經(jīng)過其他頂點,假設(shè)經(jīng)過的頂點為k。然后根據(jù)解動態(tài)規(guī)劃的經(jīng)驗,猜想dpij與dpik和dpkj怎么能沾到邊?假設(shè)從i到j(luò)只需要經(jīng)過[1,k]集合中的頂點。如果從i到j(luò)經(jīng)過k,那么dpik就代表從i到k的最短路徑,dpkj就代表從k到j(luò)的最短路徑,dpij就等于從dpik和dpkj轉(zhuǎn)移過去,而dpik和dpkj都不經(jīng)過k,都只需要經(jīng)過[1,k-1]集合中的頂點。如果從i到j(luò)不經(jīng)過k,dpij就等于從i到j(luò)只需要經(jīng)過[i,k-1]集合中的頂點時的dpij。

偽代碼:

FLYOD-WARSHALL(g)

let dp be new Table

for i from 1 to the number of vertex in g

for j from 1 to the number of vertex in g

dp[i][j] = g[i][j]

end

end

for k from 1 to the number of vertex in g

for i from 1 to the number of vertex in g

for j from 1 to the number of vertex in g

if dp[i][k] + dp[k][j] < dp[i][j]

dp[i][j] = dp[i][k] + dp[k][j]

end

end

end

return dp

時間復(fù)雜度:Θ(V3),$V$表示頂點的個數(shù)

Johnson

對于稀疏圖的話,還有辦法降低算法復(fù)雜度。直觀上看,對于稀疏圖,對每個頂點運行Dijkstra算法是快過Floyd-Warshall算法的,但是這樣要求圖中不能有負權(quán)邊。那么,可不可以將有負權(quán)邊的圖轉(zhuǎn)化為沒有負權(quán)邊的圖。Johnson就是這樣一個算法,將所有的邊進行重新賦權(quán)重(reweight),然后再對所有頂點運行Dijkstra算法。那怎么進行重新賦權(quán)重呢?樸素想法是找出所有的邊中最小的值,然后所有邊增加這個值。很可惜,這樣不行??紤]這樣一個情況,頂點a到b的最短路徑有3條邊,最短路徑為4。有a到b另一條路徑只經(jīng)過一條邊,路徑權(quán)重為5。如果對所有邊增加1權(quán)重,那么頂點a到頂點b的最短路徑就改變了。重新賦權(quán)重改變了最短路徑是明顯有問題的。

可以看出重新賦權(quán)重有兩點要求:

1.對起點和終點相同的路徑改變同樣的權(quán)重,保持原來的最短路徑結(jié)果。

2.所有邊重新賦權(quán)以后不存在負權(quán)邊。

Johnson算法先對頂點重新賦值,然后將邊的重新賦值由兩端頂點的重新賦的值得出。假設(shè)u和v為相鄰的兩個頂點。

這樣定義w’()函數(shù)以后,對路徑重新賦的值影響的只有起點和終點兩個頂點,中間頂點重賦的值都被消掉了。等價于保持原來的最短路徑結(jié)果。那么,怎么保證第二點?Johnson算法會為圖增加一個頂點s,然后對圖運行一次Bellman-Ford算法。得出新增的頂點s與所有原頂點的最短路徑,這個最短路徑就是h()數(shù)的值。

而且在運行Bellman-Ford算法的時候,正好可以偵測出圖中是否有負環(huán)。

偽代碼:

JOHNSON(g)

let s be new Vertex

g.insert(s)

if BELLMAN-FORD(g,s) == flase

there is a negative cycle in graph

else

for v equal to every vertex in g

h(v) = min(v~>s)

end

for (u,v) equal to every edge in graph

w’(u,v) = w(u,v) + h(u) - h(v)

end

let result be new Table

for u equal to every vertex in g

DIJSKTRA(g,u)

for v equal to every vertex in g

result[u][v] = min(u~>v) + h(v) - h(u)

end

end

return result

時間復(fù)雜度:O(V?Elog2V+V2log2V+V?E),V表示頂點的個數(shù),E表示邊的個數(shù)

證明了這么多的算法正確性,可以看到,證明是有技巧的,常用的只有三個方法,反證法、結(jié)構(gòu)歸納法、Cut-And-Paste法。

經(jīng)過圖論的探討,便可以理解算法與數(shù)學(xué)之間緊密的聯(lián)系。解決問題要對問題本身的特征、屬性進行總結(jié)或者提煉。有時要對問題進行相應(yīng)的轉(zhuǎn)化。然后根據(jù)問題的特征、性質(zhì)推導(dǎo)出定理。再將定理拓展,提出推論

聲明:本文內(nèi)容及配圖由入駐作者撰寫或者入駐合作網(wǎng)站授權(quán)轉(zhuǎn)載。文章觀點僅代表作者本人,不代表電子發(fā)燒友網(wǎng)立場。文章及其配圖僅供工程師學(xué)習(xí)之用,如有內(nèi)容侵權(quán)或者其他違規(guī)問題,請聯(lián)系本站處理。 舉報投訴
  • 圖論
    +關(guān)注

    關(guān)注

    0

    文章

    6

    瀏覽量

    7189
  • DFS
    DFS
    +關(guān)注

    關(guān)注

    0

    文章

    26

    瀏覽量

    9154

原文標題:圖論的各種基本算法

文章出處:【微信號:TheAlgorithm,微信公眾號:算法與數(shù)據(jù)結(jié)構(gòu)】歡迎添加關(guān)注!文章轉(zhuǎn)載請注明出處。

收藏 人收藏

    評論

    相關(guān)推薦

    變頻器負載性質(zhì)了解嗎?如何維護變頻器?

    ?眾所周知,變頻器是節(jié)能設(shè)備,但并不適用于所有設(shè)備的驅(qū)動。進行工程設(shè)計或設(shè)備改造,應(yīng)在熟悉所驅(qū)動設(shè)備的負載性質(zhì)、了解各種變頻器的性能和質(zhì)量基礎(chǔ)進行變頻器的選型。 ?1、負載的性質(zhì) ?負載的性質(zhì)決定了
    的頭像 發(fā)表于 11-25 01:05 ?29次閱讀

    【「從算法到電路—數(shù)字芯片算法的電路實現(xiàn)」閱讀體驗】+介紹基礎(chǔ)硬件算法模塊

    作為嵌入式開發(fā)者往往比較關(guān)注硬件和軟件的協(xié)調(diào)。本書介紹了除法器,信號發(fā)生器,濾波器,分頻器等基本算法的電路實現(xiàn),雖然都是基礎(chǔ)內(nèi)容,但是也是最常用到的基本模塊。 隨著逆全球化趨勢的出現(xiàn),過去的研發(fā)
    發(fā)表于 11-21 17:05

    傅里葉變換的基本性質(zhì)和定理

    傅里葉變換是信號處理和分析中的一項基本工具,它能夠?qū)⒁粋€信號從時間域(或空間域)轉(zhuǎn)換到頻率域。以下是傅里葉變換的基本性質(zhì)和定理: 一、基本性質(zhì) 線性性質(zhì) : 傅里葉變換是線性的,即對于信號的線性組合
    的頭像 發(fā)表于 11-14 09:39 ?215次閱讀

    導(dǎo)磁材料的主要性質(zhì)有哪些

    導(dǎo)磁材料,也稱為磁性材料,是指那些能夠?qū)Υ艌霎a(chǎn)生響應(yīng)并易于磁化的材料。這些材料在電子、電力、通信、汽車、航空航天、醫(yī)療和許多其他領(lǐng)域都有廣泛的應(yīng)用。導(dǎo)磁材料的性質(zhì)包括但不限于以下幾個方面: 磁導(dǎo)率
    的頭像 發(fā)表于 09-30 11:12 ?461次閱讀

    平衡電橋的性質(zhì)與特點是什么

    平衡電橋是一種測量電阻的儀器,它利用電橋平衡的原理來測量電阻值。平衡電橋具有很多性質(zhì)和特點,下面將介紹平衡電橋的性質(zhì)與特點。 原理 平衡電橋的工作原理是利用電橋平衡的原理來測量電阻值。電橋平衡是指在
    的頭像 發(fā)表于 08-27 14:37 ?959次閱讀

    渦流損耗的大小與鐵芯材料的性質(zhì)

    渦流損耗是電機、變壓器等電氣設(shè)備中常見的一種損耗形式。當交變電流通過鐵芯時,會在鐵芯中產(chǎn)生渦流,這些渦流會消耗能量,導(dǎo)致設(shè)備效率降低。渦流損耗的大小與鐵芯材料的性質(zhì)密切相關(guān)。 一、渦流損耗的基本概念
    的頭像 發(fā)表于 07-26 15:15 ?1347次閱讀

    差示掃描量熱儀:揭示材料熱性質(zhì)的秘密武器

    差示掃描量熱儀(DSC)是現(xiàn)代材料科學(xué)中不可或缺的重要工具。它憑借其獨特的測量原理和高精度的數(shù)據(jù)記錄,為科研工作者揭示了材料的熱性質(zhì)秘密。上海和晟HS-DSC-101差示掃描量熱儀DSC的工作原理
    的頭像 發(fā)表于 05-06 14:07 ?264次閱讀
    差示掃描量熱儀:揭示材料熱<b class='flag-5'>性質(zhì)</b>的秘密武器

    變壓器空載電流的性質(zhì)和作用是什么

    變壓器空載電流的性質(zhì)和作用 一、變壓器空載電流的性質(zhì) 空載電流的定義 變壓器空載電流是指在變壓器的低壓側(cè)接口(一般為自耦變壓器的繞組)未有負荷連接時所消耗的電流。通常,變壓器空載電流是在額定電壓
    的頭像 發(fā)表于 03-15 17:19 ?3171次閱讀

    RLC串聯(lián)電路的性質(zhì)如何判斷

    RLC串聯(lián)電路是由電阻(R)、電感(L)和電容(C)以串聯(lián)方式連接而成的電路。在這樣的電路中,通過電阻、電感和電容的電流相同,而總電壓等于各元件電壓之和。這篇文章將探討RLC串聯(lián)電路的性質(zhì)以及
    的頭像 發(fā)表于 03-09 14:11 ?3156次閱讀

    靜電平衡狀態(tài)下帶電導(dǎo)體的性質(zhì)是什么

    靜電平衡狀態(tài)下,帶電導(dǎo)體的性質(zhì)涉及電場、電勢、電荷分布和電勢能等方面。下面將詳細介紹靜電平衡狀態(tài)下帶電導(dǎo)體的性質(zhì)。 一、電場分布: 在靜電平衡狀態(tài)下,帶電導(dǎo)體內(nèi)部的電場為零,而在帶電導(dǎo)體外部的電場
    的頭像 發(fā)表于 02-26 17:23 ?2292次閱讀

    開發(fā)板載調(diào)試器跟miniwiggler是一個性質(zhì)嗎?

    開發(fā)板載調(diào)試器跟miniwiggler是一個性質(zhì)嗎?電路一樣嗎?FT2232里面是否有程序,還是只是個轉(zhuǎn)換芯片?
    發(fā)表于 02-06 07:03

    熱分析儀:揭示物質(zhì)性質(zhì)的微觀秘密

    熱分析儀是一種非常重要的實驗室設(shè)備,廣泛應(yīng)用于材料科學(xué)、化學(xué)、物理和生物學(xué)等領(lǐng)域。它利用物質(zhì)在不同溫度下的物理性質(zhì)變化,如質(zhì)量、體積或某些特性的變化,來研究物質(zhì)的性質(zhì)和行為。上海和晟
    的頭像 發(fā)表于 01-09 09:31 ?575次閱讀
    熱分析儀:揭示物質(zhì)<b class='flag-5'>性質(zhì)</b>的微觀秘密

    壓線鉗四邊形與六邊形的特征、性質(zhì)以及應(yīng)用

    在幾何學(xué)中,四邊形和六邊形是兩個常見的多邊形形狀。它們在不同的方面具有不同的特點和用途。本文將比較壓線鉗四邊形和六邊形的特征、性質(zhì)以及應(yīng)用,以幫助讀者更好地理解它們并做出選擇。 一、四邊形的特征
    的頭像 發(fā)表于 12-28 17:05 ?5546次閱讀

    芯片晶圓里TaN薄膜是什么?TaN薄膜的性質(zhì)、制備方法

    芯片晶圓里TaN薄膜是什么?TaN薄膜的性質(zhì)、制備方法 TaN薄膜是一種在芯片晶圓制備過程中常用的材料。它具有高熔點、高硬度和良好的熱穩(wěn)定性,因此在芯片技術(shù)中應(yīng)用廣泛。本文將對TaN薄膜的性質(zhì)和制備
    的頭像 發(fā)表于 12-19 11:48 ?1870次閱讀

    勻膠速度影響光刻膠的哪些性質(zhì)

    勻膠是光刻中比較重要的一步,而旋涂速度是勻膠中至關(guān)重要的參數(shù),那么我們在勻膠時,是如何確定勻膠速度呢?它影響光刻膠的哪些性質(zhì)?
    的頭像 發(fā)表于 12-15 09:35 ?1836次閱讀
    勻膠速度影響光刻膠的哪些<b class='flag-5'>性質(zhì)</b>?