在材料化學領域人工智能也在發揮著越來越重要的作用,往往研究人員想盡腦汁做不出來的東西它可以經過成千上萬次的計算給出最優答案。
【引言】
機器學習方法正在成為眾多學科科學探究的一部分。 機器學習(ML)是可以從數據中學習計算機算法的研究和構建。我們腦海里對新材料的發現以及化學合成基本還停留在傳統的研究人員身穿白大褂,手里拿著各種化學試劑的場景。殊不知這幾年人工智能的發展已經應用到了各個領域,人工智能真正讓人們接受應該是AlphaGo大戰圍棋天才柯潔而一戰成名。它能通過數據記錄上百個頂級棋手的下棋行為,通過大數據分析,后臺的優化算法而做到越賽越勇。在材料化學領域人工智能也在發揮著越來越重要的作用,往往研究人員想盡腦汁做不出來的東西它可以經過成千上萬次的計算給出最優答案。
【成果簡介】
Science在線發表了普林斯頓大學Abigail G. Doyle、Merck Sharp & Dohme公司Spencer D. Dreher(共同通訊)等人題為“Predicting reaction performance in C–N cross-coupling using machine learning”的文章,團隊證明了機器學習可以用來預測多維化學空間中合成反應的性能,使用通過高通量實驗獲得的數據。通過創建腳本來計算和提取原子,分子和振動描述符,用于鈀催化的Buchwald-Hartwig芳基鹵化物與4-甲基苯胺在各種潛在抑制添加劑存在下的交叉偶聯反應。使用這些描述符作為輸入和反應產量作為輸出,表明隨機森林算法提供了比線性回歸分析顯著改進的預測性能。
【圖文導讀】
圖1 ML在反應預測中的應用
圖2 測試集性能圖
圖3 加法預測
圖4 模型分析
-
人工智能
+關注
關注
1791文章
46859瀏覽量
237571 -
機器學習
+關注
關注
66文章
8377瀏覽量
132409
原文標題:人工智能除了創造新材料還能預測化學反應性能
文章出處:【微信號:AItists,微信公眾號:人工智能學家】歡迎添加關注!文章轉載請注明出處。
發布評論請先 登錄
相關推薦
評論