精品国产人成在线_亚洲高清无码在线观看_国产在线视频国产永久2021_国产AV综合第一页一个的一区免费影院黑人_最近中文字幕MV高清在线视频

0
  • 聊天消息
  • 系統消息
  • 評論與回復
登錄后你可以
  • 下載海量資料
  • 學習在線課程
  • 觀看技術視頻
  • 寫文章/發帖/加入社區
會員中心
創作中心

完善資料讓更多小伙伴認識你,還能領取20積分哦,立即完善>

3天內不再提示

解析人工智能的3大浪潮、3大技術和3大應用

ThunderSoft中科創達 ? 來源:未知 ? 作者:胡薇 ? 2018-04-25 12:36 ? 次閱讀

所謂人工智能(Artificial Intelligence;縮寫:AI),是指以人工方式讓機器來實現人類所具有智慧的技術。只不過,目前能完全模擬人類智能的技術還不存在,世界上絕大多數人工智能還只用于解決某個特定問題。本篇文章希望讓初次接觸AI的讀者,能透過333口訣,快速理解AI到底是什么。

AI的三次浪潮

人工智能AI發展史

? 第一次AI浪潮

第一次AI浪潮起于1950~1960年,止于1980年代。由于出現在網絡之前,因此又被稱為“古典人工智能”。這時期出現的“符號主義”與“聯結主義”,分別是日后“專家系統”與“深度學習”的雛形。只不過,雖然當時的成果已能解開拼圖或簡單的游戲,卻幾乎無法解決實用的問題。

? 第二次AI浪潮

第二次AI熱潮伴隨著計算機的普及,出現在1980年代。這時期所進行的研究,是以灌輸「專家知識」作為規則,來協助解決特定問題的“專家系統”(Expert system)為主。然而,縱使當時有商業應用的實例,應用范疇卻很有限,熱潮也因此逐漸消退。

? 第三次AI浪潮

第三次AI浪潮則出現于2010年代,伴隨著高性能計算機、互聯網、大數據、傳感器的普及,以及計算成本的下降,“機器學習”隨之興起。所謂機器學習(Machine leaning),是指讓計算機大量學習數據,使它可以像人類一樣辨識聲音及影像,或是針對問題做出合適的判斷。

AI的三大技術

快速了解了AI的發展史后,我們來看看當代人工智能的三大代表性模型:遺傳算法、專家系統、類神經網絡

? 遺傳算法

遺傳算法(Genetic algorithm;GA),又稱為演化式算法(Evolutionary algorithm),是受達爾文演化論所啟發的人工智能。它透過「適者生存」的規則,將“優秀的個體”想象成“好的答案”,透過演化的方式來找出最佳解。

? 專家系統

專家系統(Expert system),則是針對預設的問題,事先準備好大量的對應方式。它應用在很多地方,尤其是疾病診斷。只不過,專家系統只能針對專家預先考慮過的狀況來準備對策,它并沒有自行學習的能力,因此還是有其局限性。

? 類神經網絡

從第三次AI浪潮所興起的機器學習(Machine learning)有許多種手法,其中最受矚目的,莫過于深度學習(Deep learning)了。所謂深度學習,是透過模仿人腦的“類神經網絡”(Neural network)來學習大量數據的手法。

類神經網絡的由來

若你去觀察腦的內部,會發現有大量稱為“神經元”的神經細胞彼此相連。一個神經元從其他神經元那里接收的電氣信號量達某一定值以上,就會興奮(神經沖動);在某一定值以下,就不會興奮。

興奮起來的神經元,會將電器信號傳送給下一個相連的神經元。下一個神經元同樣會因此興奮或不興奮。簡單來說,彼此相連的神經元,會形成聯合傳遞行為。我們透過將這種相連的結構來數學模型化,便形成了類神經網絡。

類神經網絡:深度學習

我們可以發現,經模型化的的類神經網絡,是由“輸入層”(Input layer)、“隱藏層”(Hidden layer)及“輸出層”(Output layer)等三層所構成。另外,學習數據則是由輸入數據以及相對應的正確解答來組成。

以影像辨識為例,為了讓AI學習類神經網絡的模型,首先必須先將影像學習數據分割成像素數據,然后將各像素值輸進輸入層。

接受了數據的輸入層,將像素值乘上“權重”后,便傳送給后方隱藏層的神經元。隱藏層的各個神經元會累加前一層所接收到的值,并將其結果再乘上“權重”后,傳送給后方的神經元。最后,經由輸出層的神經元的輸出,便可得到影像辨識的預測結果。

為了讓輸出層的值跟各個輸入數據所對應的正解數據相等,會對各個神經元的輸入計算出適當的“權重”值。

這個權重的計算,一般是使用“誤差倒傳遞算法”(Error Back Propagation),使用與正解數據之間的誤差,從輸出層逆推回去。透過各「權重」的調整,來縮小輸出層的值與正解數據的值之間的誤差,以建立出完成學習的模型。

由于過去類神經網絡之間進行傳遞的權重值難以優化,因此曾有多數研究者對類神經網絡的研究持否定態度。直到2006年,辛頓(Geoffrey Hinton)開發出自動編碼器(Autoencoder)的手法,才突破了這項瓶頸。

自動編碼器是指,在類神經網絡的輸入層和輸出層使用相同數據,并將隱藏層設置于二者之間,藉此用來調整類神經網絡之間的權重參數的一種手法。利用以自動編碼器所獲得的類神經網絡權重參數值進行初始化后,便能應用「誤差倒傳遞算法」,提高多層類神經網絡的學習準確度。

透過類神經網絡,深度學習便成為了“只要將數據輸入類神經網絡,它就能自行抽出特征”的人工智能,而這又稱為“特征學習”(feature learning)。

深度學習最擅長的,是它能辨識圖像數據或波形數據這類無法符號化的數據。自2010年代以來,如Google、Microsoft及Facebook等美國知名IT企業,都開始著手深度學習的研究。例如,蘋果「Siri」的語音識別,Microsoft搜索引擎「Bing」所具備的影像搜尋等等,而Google的深度學習項目也已超過1,500項。

至于深度學習如此飛躍的成長,要歸功于硬設備的提升。圖形處理器GPU)大廠輝達(NVIDIA)利用該公司的圖形適配器來提升深度學習的性能,提供鏈接庫(Library)和框架(framework)產品,并積極開設研討課程。另外,Google也公開了框架「TensorFlow」,可以將深度學習應用于數據分析。

AI的三大應用

AI應用領域主要可分為語音識別、影像辨識以及自然語言處理等三部分。

? 影像辨識

影像辨識部分,雖然一般圖片的辨識已有同等于人類的辨識率,但動態影像的辨識準確度卻仍比不上人類,目前還在進行各種算法的測試。其中,影像辨識目前最火熱的應用場域非自動駕駛莫屬了。

整個汽車、信息通訊產業都正朝著自駕車的方向努力,例如Google持續進行自動駕駛的研究,TOYOTA也在美國設立豐田研究所,可以知道現階段的開發已十分接近實用化。因此,我們可判斷目前影像辨識的成熟度是介在研究和實用等級之間。

? 語音識別

語音識別部分,透過多年來語音識別競賽CHiME的研究,已經有了等同人類的辨識度(CHiME,是針對實際生活環境下的語音識別,所進行評測的國際語音識別競賽)。此外,Apple、Google、Amazon也相繼提出可應用于日常生活的服務,因此其成熟度已達到實用等級。

? 自然語言處理

自然語言處理(Natural language processing;NLP),是試著讓人工智能能理解人類所寫的文字和所說的話語。NLP首先會分解詞性,稱之“語素分析”(morphemic analysis),在分解出最小的字義單位后,接著會進行“語法分析”(syntactic analysis),最后再透過“語意分析”(semantic analysis)來了解含意。

輸出部分,自然語言處理也與生成文法(generative grammar)密切相關。生成文法理論認為,只要遵循規則即可生成文句。這也代表著,只要把規則組合在一起,便可能生成文章。

在自然語言處理中,最具代表性的應用就是“聊天機器人”(Chatbot)了,它是一種如真人般,可透過文字訊息與人對話的程序。2016年,臉書推出了“Facebook Messenger Platform”,而Line也推出了“Messaging API”,因而促使這種搭載NLP技術的聊天機器人成為矚目的焦點。

另外,由IBM所開發的華生(IBM Watson),也是應用NLP的人工智能而成。華生可以從維基百科等語料庫中抽取知識,學習詞匯與詞匯之間的相關性。現在,就連軟件銀行(SoftBank)機器人Pepper也是搭載華生系統。

只不過,由于在日常對話中,我們很常省略詞句,也不一定會提及時空背景,因此當前的Chatbot尚無法與人類進行天花亂墜的對話。所以說,現行多數的Chatbot廠商,還是會限定對話的環境與應用領域。

聲明:本文內容及配圖由入駐作者撰寫或者入駐合作網站授權轉載。文章觀點僅代表作者本人,不代表電子發燒友網立場。文章及其配圖僅供工程師學習之用,如有內容侵權或者其他違規問題,請聯系本站處理。 舉報投訴
  • 遺傳算法
    +關注

    關注

    0

    文章

    236

    瀏覽量

    20593
  • 語音識別
    +關注

    關注

    38

    文章

    1724

    瀏覽量

    112549
  • 人工智能
    +關注

    關注

    1791

    文章

    46872

    瀏覽量

    237599

原文標題:AI|完整解析人工智能:3大浪潮+3大技術+3大應用

文章出處:【微信號:THundersoft,微信公眾號:ThunderSoft中科創達】歡迎添加關注!文章轉載請注明出處。

收藏 人收藏

    評論

    相關推薦

    嵌入式和人工智能究竟是什么關系?

    了重要作用。在未來,隨著嵌入式系統和人工智能技術的不斷進步,我們可以預見更多創新應用的出現,為社會發展和生活品質的提升帶來更多可能性。
    發表于 11-14 16:39

    《AI for Science:人工智能驅動科學創新》第6章人AI與能源科學讀后感

    探討了人工智能如何通過技術創新推動能源科學的進步,為未來的可持續發展提供了強大的支持。 首先,書中通過深入淺出的語言,介紹了人工智能在能源領域的基本概念和技術原理。這使得我對
    發表于 10-14 09:27

    AI for Science:人工智能驅動科學創新》第4章-AI與生命科學讀后感

    很幸運社區給我一個閱讀此書的機會,感謝平臺。 《AI for Science:人工智能驅動科學創新》第4章關于AI與生命科學的部分,為我們揭示了人工智能技術在生命科學領域中的廣泛應用和深遠影響。在
    發表于 10-14 09:21

    《AI for Science:人工智能驅動科學創新》第一章人工智能驅動的科學創新學習心得

    ,還促進了新理論、新技術的誕生。 3. 挑戰與機遇并存 盡管人工智能為科學創新帶來了巨大潛力,但第一章也誠實地討論了伴隨而來的挑戰。數據隱私、算法偏見、倫理道德等問題不容忽視。如何在利用AI提升科研效率
    發表于 10-14 09:12

    risc-v在人工智能圖像處理應用前景分析

    和使用該技術,無需支付專利費或使用費。這大大降低了人工智能圖像處理技術的研發成本,并吸引了大量的開發者、企業和研究機構參與其生態建設。 靈活性則體現在RISC-V可以根據不同的應用場景進行定制和優化,從而
    發表于 09-28 11:00

    名單公布!【書籍評測活動NO.44】AI for Science:人工智能驅動科學創新

    大力發展AI for Science的原因。 第2章從科學研究底層的理論模式與主要困境,以及人工智能三要素(數據、算法、算力)出發,對AI for Science的技術支撐進行解讀。 第3章介紹了在
    發表于 09-09 13:54

    報名開啟!深圳(國際)通用人工智能大會將啟幕,國內外大咖齊聚話AI

    呈現、產業展覽、技術交流、學術論壇于一體的世界級人工智能合作交流平臺。本次大會暨博覽會由工業和信息化部政府采購中心、廣東省工商聯、前海合作區管理局、深圳市工信局等單位指導,深圳市人工智能產業協會主辦
    發表于 08-22 15:00

    FPGA在人工智能中的應用有哪些?

    定制化的硬件設計,提高了硬件的靈活性和適應性。 綜上所述,FPGA在人工智能領域的應用前景廣闊,不僅可以用于深度學習的加速和云計算的加速,還可以針對特定應用場景進行定制化計算,為人工智能技術的發展提供有力支持。
    發表于 07-29 17:05

    5G智能物聯網課程之Aidlux下人工智能開發(SC171開發套件V2)

    Aidlite-SDK模型推理 https://v2.docs.aidlux.com/sdk-api/aidlite-sdk/aidlite-python 人工智能 5G AIoT技術實踐入門與探索_V2 59分
    發表于 05-10 16:46

    5G智能物聯網課程之Aidlux下人工智能開發(SC171開發套件V1)

    ://t.elecfans.com/v/25610.html *附件:芯片模組外觀檢測實訓.pdf 人工智能 工業檢測:芯片模組外觀檢測實訓part3 12分32秒 https://t.elecfans.com/v
    發表于 04-01 10:40

    什么是HBM3E內存?Rambus HBM3E/3內存控制器內核

    Rambus HBM3E/3 內存控制器內核針對高帶寬和低延遲進行了優化,以緊湊的外形和高能效的封裝為人工智能訓練提供了最大的性能和靈活性。
    發表于 03-20 14:12 ?2336次閱讀
    什么是HBM<b class='flag-5'>3</b>E內存?Rambus HBM<b class='flag-5'>3</b>E/<b class='flag-5'>3</b>內存控制器內核

    Claude 3 Haiku模型在Amazon Bedrock上正式可用

    近日,人工智能領域的創新者Anthropic公布了其Claude 3基礎模型系列的最新進展。該系列包括Claude 3 Haiku、Claude 3 Sonnet和Claude
    的頭像 發表于 03-19 11:12 ?708次閱讀

    美光量產行業領先的HBM3E解決方案,加速人工智能發展

    領先地位,并且憑借 HBM3E 的超凡性能和能效為人工智能(AI)解決方案賦能。 HBM3E:推動人工智能革命 隨著人工智能需求的持續激增,
    的頭像 發表于 03-04 18:51 ?1165次閱讀
    美光量產行業領先的HBM<b class='flag-5'>3</b>E解決方案,加速<b class='flag-5'>人工智能</b>發展

    美光開始量產行業領先的 HBM3E 解決方案,加速人工智能發展

    里程碑式進展持續保持行業領先地位,并且憑借 HBM3E?的超凡性能和能效為人工智能(AI)解決方案賦能。 ? ? HBM3E:推動人工智能革命 ? 隨著
    的頭像 發表于 03-04 14:51 ?839次閱讀
    美光開始量產行業領先的 HBM<b class='flag-5'>3</b>E 解決方案,加速<b class='flag-5'>人工智能</b>發展

    嵌入式人工智能的就業方向有哪些?

    嵌入式人工智能的就業方向有哪些? 在新一輪科技革命與產業變革的時代背景下,嵌入式人工智能成為國家新型基礎建設與傳統產業升級的核心驅動力。同時在此背景驅動下,眾多名企也紛紛在嵌入式人工智能領域布局
    發表于 02-26 10:17