FFT結果的物理意義
FFT是離散傅立葉變換的快速算法,可以將一個信號變換到頻域。有些信號在時域上是很難看出什么特征的,但是如果變換到頻域之后,就很容易看出特征了。這 就是很多信號分析采用FFT變換的原因。另外,FFT可以將一個信號的頻譜提取出來,這在頻譜分析方面也是經常用的。
雖然很多人都知道FFT是什么,可以用來做什么,怎么去做,但是卻不知道FFT之后的結果是什意思、如何決定要使用多少點來做FFT。
一個模擬信號,經過ADC采樣之后,就變成了數字信號。采樣定理告訴我們,采樣頻率要大于信號頻率的兩倍。
采樣得到的數字信號,就可以做FFT變換了。N個采樣點,經過FFT之后,就可以得到N個點的FFT結果。為了方便進行FFT運算,通常N取2的整數次方。
假設采樣頻率為Fs,信號頻率F,采樣點數為N。那么FFT之后結果就是一個為N點的復數。每一個點就對應著一個頻率點。這個點的模值,就是該頻率值下的 幅度特性。具體跟原始信號的幅度有什么關系呢?假設原始信號的峰值為A,那么FFT的結果的每個點(除了第一個點直流分量之外)的模值就是A的N/2倍。 而第一個點就是直流分量,它的模值就是直流分量的N倍。而每個點的相位呢,就是在該頻率下的信號的相位。第一個點表示直流分量(即0Hz),而最后一個點 N的再下一個點(實際上這個點是不存在的,這里是假設的第N+1個點,可以看做是將第一個點分做兩半分,另一半移到最后)則表示采樣頻率Fs,這中間被 N-1個點平均分成N等份,每個點的頻率依次增加。例如某點n所表示的頻率為: 。由上面的公式可以看出,Fn所能分辨到頻率為 Fs/N,如果采樣頻率Fs為1024Hz,采樣點數為1024點,則可以分辨到1Hz。1024Hz的采樣率采樣1024點,剛好是1秒,也就是說,采樣1秒時間的信號并做FFT,則結果可以分析到1Hz,如果采樣2秒時間的信號并做FFT,則結果可以分析到0.5Hz。如果要提高頻率分辨力,則必須增加采樣點數,也即采樣時間。頻率分辨率和采樣時間是倒數關系。假設FFT之后某點n用復數a+bi表示,那么這個復數的模就是 ,相位就是 。根據以上的結果,就可以計算出n點(n≠1,且n<=N/2)對應的信號的表達式為: ,即 。對于n=1點的信號,是直流分量,幅度即為A1/N。由于FFT結果的對稱性,通常我們只使用前半部分的結果,即小于采樣頻率一半的結果。?
下面以一個實際的信號來做說明。
假設我們有一個信號,它含有2V的直流分量,頻率為50Hz、相位為-30度、幅度為3V的交流信號,以及一個頻率為75Hz、相位為90度、幅度為1.5V的交流信號。用數學表達式就是如下:
S=2+3*cos(2*pi*50*t-pi*30/180)+1.5*cos(2*pi*75*t+pi*90/180)
式中cos參數為弧度,所以-30度和90度要分別換算成弧度。我們以256Hz的采樣率對這個信號進行采樣,總共采樣256點。按照我們上面的分析,Fn=(n-1)*Fs/N,我們可以知道,每兩個點之間的間距就是1Hz,第n個點的頻率就是n-1。我們的信號有3個頻率:0Hz、50Hz、75Hz,應該分別在第1個點、第51個點、第76個點上出現峰值,其它各點應該接近0。實際情況如何呢?
我們來看看FFT的結果的模值如圖所示。
從圖中我們可以看到,在第1點、第51點、和第76點附近有比較大的值。我們分別將這三個點附近的數據拿上來細看:
1點: 512+0i
2點: -2.6195E-14 - 1.4162E-13i
3點: -2.8586E-14 - 1.1898E-13i
50點:-6.2076E-13 - 2.1713E-12i
51點:332.55 - 192i
52點:-1.6707E-12 - 1.5241E-12i
75點:-2.2199E-13 -1.0076E-12i
76點:3.4315E-12 + 192i
77點:-3.0263E-14 +7.5609E-13i
很明顯,1點、51點、76點的值都比較大,它附近的點值都很小,可以認為是0,即在那些頻率點上的信號幅度為0。接著,我們來計算各點的幅度值。分別計算這三個點的模值,
結果如下:
1點: 512
51點:384
76點:192
按照公式,可以計算出直流分量為:512/N=512/256=2;50Hz信號的幅度為:384/(N/2)=384/(256/2)=3;75Hz信號的幅度為192/(N/2)=192/(256/2)=1.5。可見,從頻譜分析出來的幅度是正確的。
然后再來計算相位信息。直流信號沒有相位可言,不用管它。先計算50Hz信號的相位,atan2(-192, 332.55)=-0.5236,結果是弧度,換算為角度就是180*(-0.5236)/pi=-30.0001。再計算75Hz信號的相位,atan2(192, 3.4315E-12)=1.5708弧度,換算成角度180*1.5708/pi=90.0002。可見,相位也是對的。
根據FFT結果以及上面的分析計算,我們就可以寫出信號的表達式了,它就是我們開始提供的信號。
總結:假設采樣頻率為Fs,采樣點數為N,做FFT之后,某一點n(n從1開始)表示的頻率為:Fn=(n-1)*Fs/N;該點的模值除以N/2就是對應該頻率下的信號的幅度(對于直流信號是除以N);該點的相位即是對應該頻率下的信號的相位。相位的計算可用函數atan2(b,a)計算。atan2(b,a)是求坐標為(a,b)點的角度值,范圍從-pi到pi。要精確到xHz,則需要采樣長度為1/x秒的信號,并做FFT。要提高頻率分辨率,就需要增加采樣點數,這在一些實際的應用中是不現實的,需要在較短的時間內完成分析。解決這個問題的方法有頻率細分法,比較簡單的方法是采樣比較短時間的信號,然后在后面補充一定數量的0,使其長度達到需要的點數,再做FFT,這在一定程度上能夠提高頻率分辨力。
-
FFT
+關注
關注
15文章
434瀏覽量
59313 -
模擬信號
+關注
關注
8文章
1118瀏覽量
52404 -
傅立葉變換
+關注
關注
3文章
99瀏覽量
32352
原文標題:FFT結果的物理意義
文章出處:【微信號:ALIFPGA,微信公眾號:FPGA極客空間】歡迎添加關注!文章轉載請注明出處。
發布評論請先 登錄
相關推薦
評論