精品国产人成在线_亚洲高清无码在线观看_国产在线视频国产永久2021_国产AV综合第一页一个的一区免费影院黑人_最近中文字幕MV高清在线视频

0
  • 聊天消息
  • 系統(tǒng)消息
  • 評論與回復(fù)
登錄后你可以
  • 下載海量資料
  • 學(xué)習(xí)在線課程
  • 觀看技術(shù)視頻
  • 寫文章/發(fā)帖/加入社區(qū)
會員中心
創(chuàng)作中心

完善資料讓更多小伙伴認(rèn)識你,還能領(lǐng)取20積分哦,立即完善>

3天內(nèi)不再提示

2018年AI技術(shù)的應(yīng)用現(xiàn)狀和未來發(fā)展

DPVg_AI_era ? 來源:未知 ? 作者:李倩 ? 2018-08-01 09:16 ? 次閱讀

AI技術(shù)應(yīng)用的擴(kuò)展導(dǎo)致全球AI人才極度緊缺,中美在AI產(chǎn)業(yè)相關(guān)領(lǐng)域的人才和地盤之爭愈演愈烈,以半導(dǎo)體行業(yè)為焦點,兩國幾乎因此陷入貿(mào)易大戰(zhàn)。這份報告由劍橋大學(xué)兩位博士制作,從研究、人才、行業(yè)和政策等角度詳述2018年AI技術(shù)的應(yīng)用現(xiàn)狀和未來發(fā)展。

人工智能是一個跨領(lǐng)域?qū)W科,旨在創(chuàng)造出智能機(jī)器。我們相信,AI 將會成為促進(jìn)數(shù)字化、數(shù)據(jù)社會的強(qiáng)大催化劑。這是因為,如今我們周圍的一切,從文化到消費產(chǎn)品,無一不是智能的產(chǎn)物。在本報告中,我們將重點從過去 12 個月中 AI 所取得的進(jìn)步來一窺其發(fā)展?fàn)顩r。這份報告匯集了我們看到的可能引發(fā)關(guān)于 AI 討論和代表 AI 未來發(fā)展方向的最有趣的事實,并將從 AI 研究、人才、行業(yè)和政策幾個角度展開詳述。

本報告目錄如下:

研究:研究與技術(shù)突破

遷移學(xué)習(xí)

人工智能硬件

圖像場景理解

大規(guī)模視頻理解數(shù)據(jù)

文本語義理解

目標(biāo)導(dǎo)向的強(qiáng)化學(xué)習(xí):以游戲為例

AlphaZero 無監(jiān)督棋譜學(xué)習(xí), OpenAI 魔獸爭霸

怎樣保證模型訓(xùn)練的無偏性

調(diào)參的可解釋性

對抗攻擊

谷歌 AutoML 自動學(xué)習(xí)

Federated Learning

人才:AI 領(lǐng)域人才供需和分布

行業(yè):目前和未來 AI 驅(qū)動的大型平臺、資金和應(yīng)用領(lǐng)域

云計算

健康醫(yī)療

政務(wù)國防

隱私保護(hù)與數(shù)據(jù)匿名化

衛(wèi)星數(shù)據(jù)處理

網(wǎng)絡(luò)安全

工場自動化

替代藍(lán)領(lǐng)工作

農(nóng)業(yè)

自動駕駛

金融

企業(yè)自動化

材料科學(xué)

政策:公眾對 AI 的意見,經(jīng)濟(jì)意義和新生的地緣政治學(xué) (P109)

公眾對自動化的態(tài)度:兩份綜述

公眾對自動化的態(tài)度:皮尤研究中心

公眾對自動化的態(tài)度:布魯克林研究中心

美國勞工市場的變化

AI 對勞工市場變化的影響

AI 對就業(yè)率和工資的影響

各國的 AI 國家戰(zhàn)略:中國,法國,歐盟,加拿大,韓國

中國對半導(dǎo)體器件的強(qiáng)大需求

為什么跟美國比中國的半導(dǎo)體產(chǎn)業(yè)規(guī)模如此小

預(yù)測

未來一年的 8 個預(yù)測

總結(jié)

第一部分:研究與技術(shù)突破

遷移學(xué)習(xí)

我們通過學(xué)習(xí)示例來訓(xùn)練機(jī)器學(xué)習(xí)模型解決任務(wù)。但是,為解決一個新的任務(wù),需要使用專門的新數(shù)據(jù)重新進(jìn)行訓(xùn)練。遷移學(xué)習(xí)可以讓經(jīng)過訓(xùn)練獲得的知識應(yīng)用于新任務(wù)中。

遷移學(xué)習(xí)能夠?qū)θ祟惢颊叩奈kU皮膚病變進(jìn)行自動、最先進(jìn)的檢測。Google InceptionV3 網(wǎng)絡(luò)首先在 ImageNet 上接受訓(xùn)練,再使用 129,450 張臨床圖像進(jìn)行重新訓(xùn)練以檢測 2,032 種不同的皮膚病。它可以學(xué)習(xí)僅基于像素輸入和疾病標(biāo)簽對圖像進(jìn)行分類。

結(jié)果顯示,該模型優(yōu)于 21 名斯坦福皮膚科專家。

AI硬件新前沿

半導(dǎo)體在促進(jìn)AI 發(fā)展中的角色

半導(dǎo)體(或芯片)是 AI 研究和應(yīng)用進(jìn)步的關(guān)鍵驅(qū)動因素,這是因為 AI 模型經(jīng)常需要訓(xùn)練大量數(shù)據(jù)來學(xué)習(xí)特定任務(wù)(如圖像識別)。

GPU 成為 AI 模型訓(xùn)練的得力助手,很大部分原因是其能提供比 CPU 更強(qiáng)大的并行計算能力。這意味著更快的訓(xùn)練速度和迭代。

硬件之戰(zhàn): 更多數(shù)量的 GPU 會讓訓(xùn)練速度更快,構(gòu)建規(guī)模更大、功能更強(qiáng)大的模型。

AI 硬件對深度學(xué)習(xí)意義重大

AI 模型性能隨著數(shù)據(jù)規(guī)模和模型參數(shù)提高,計算量提高。

毫無疑問,GPU 越來越受到開發(fā)者的歡迎。

然而,GPU 更擅長處理圖像任務(wù),并進(jìn)一步擴(kuò)展到高性能的計算和 AI 任務(wù)。

訓(xùn)練時雖然廣泛使用 GPU,但它卻并不擅長推理。

雖然大多數(shù)情況下,GPU 性能優(yōu)于 CPU,但數(shù)據(jù)中心大量的 CPU 使其成為一個有用且廣泛使用的平臺。

例如,在 Facebook,GPU 基本上被用于線下訓(xùn)練,而不是實時用戶數(shù)據(jù)處理。

處理器內(nèi)核時鐘頻率沒有變得更快,摩爾定律產(chǎn)生的能量有限。

GPU 和新型硅片的租金價格太高,意味著計算資源會受限于資金預(yù)算。

雖然谷歌的 TPUv2 價格更貴,但是模型訓(xùn)練速度更快,更加經(jīng)濟(jì)。

在 Google I/O 2018 上,谷歌發(fā)布了第三代 TPU。

在 2018 年 5 月的 GTC 上,英偉達(dá)發(fā)布了 HGX-2,可同時用于高精度要求的科學(xué)計算和低精度要求的 AI 負(fù)載任務(wù)。

很多企業(yè)在開發(fā)定制 AI 芯片,包括 IC集成電路)供應(yīng)商英特爾高通、英偉達(dá)等,科技巨頭和 HPC(高性能計算)供應(yīng)商谷歌、亞馬遜 AWS、三星等,IP 供應(yīng)商 ARM、新思科技等,中國創(chuàng)業(yè)公司寒武紀(jì)、地平線機(jī)器人等,以及全球的創(chuàng)業(yè)公司 Cerebras、Wave Computing 等。

大型云服務(wù)商在制造專用 AI 硬件,并大幅提高預(yù)算支出。

圖像場景理解

傳統(tǒng)計算機(jī)視覺通過檢測物體來描述視覺場景

AI 模型進(jìn)行物體像素關(guān)聯(lián)(語義分割)或識別展示物體(分類)

然而,檢測出圖像中的物體還不足以理解真實場景

AI 模型在進(jìn)行基于目標(biāo)理解描述視覺場景任務(wù)時犯了明顯的錯誤。

真正的視覺場景理解需要理解動作和常識

使用深度學(xué)習(xí)和標(biāo)記目標(biāo)動作的視頻來學(xué)習(xí)常識是一種可行的方法。

大規(guī)模視頻理解數(shù)據(jù)

創(chuàng)建訓(xùn)練機(jī)器學(xué)習(xí)模型理解視頻的數(shù)據(jù)集

創(chuàng)建描述感興趣的動作的視頻,例如假裝扔下一些東西

如果深度學(xué)習(xí)模型能夠識別和消除視頻中行為中的細(xì)微差別,那么它具備了關(guān)于世界的常識。這也被稱為“直觀物理學(xué)”(intuitive physics)。

文本語義理解

深度學(xué)習(xí)模型實際上可以理解視頻中的動詞和名詞。

機(jī)器還可以通過學(xué)習(xí)從不同視角理解視覺場景

如果機(jī)器學(xué)習(xí)模型可以正確地預(yù)測同一場景的另一全新視角,它就獲得了這個場景的內(nèi)化知識。

目標(biāo)導(dǎo)向的強(qiáng)化學(xué)習(xí):以游戲為例

AlphaZero 表明深度強(qiáng)化學(xué)習(xí)可以通過學(xué)習(xí)擊敗世界圍棋冠軍

AlphaZero 是一個無人類干預(yù)或歷史玩家數(shù)據(jù)輸入,通過自我對弈即可預(yù)測從一特定棋盤位置走棋輸贏概率的 AI 系統(tǒng)。讓人震驚的是,AlphaZero 系統(tǒng)超越所有其他版本的 AlphaGo(基于兩套神經(jīng)網(wǎng)絡(luò)),經(jīng)過 40 天的訓(xùn)練即超越人類最高水平。

OpenAI 的多代理強(qiáng)化學(xué)習(xí)系統(tǒng)學(xué)習(xí)復(fù)雜的實時戰(zhàn)略游戲《DOTA 2》

OpenAI Five 是由 5 個 RL 代理組成的團(tuán)隊,通過強(qiáng)化學(xué)習(xí)自我對弈優(yōu)化游戲策略每個代理的神經(jīng)網(wǎng)絡(luò)經(jīng)過強(qiáng)化學(xué)習(xí)訓(xùn)練都可觀察局部和高維環(huán)境來生成長期動作規(guī)劃。這些強(qiáng)化學(xué)習(xí)代理可以組團(tuán)打敗人類玩家,它們采取的多樣化行動和大范圍地圖互動十分引人關(guān)注。

怎樣保證模型訓(xùn)練無偏見

機(jī)器學(xué)習(xí)偏見例 1: 刻板印象

土耳其語中性別是中立的,但是谷歌翻譯會在英語 - 土耳其語轉(zhuǎn)換時產(chǎn)生性別區(qū)別,反之亦然。

機(jī)器學(xué)習(xí)偏見例 2: 種族歧視

當(dāng)訓(xùn)練數(shù)據(jù)中未合理標(biāo)識皮膚顏色時,計算機(jī)視覺系統(tǒng)會做出冒犯性的種族偏見的行為,比如一些人臉識別系統(tǒng)無法識別黑皮膚的人。

調(diào)參的可解釋性

與所有軟件一樣,ML 模型也需要調(diào)參,但是卻很難解釋原理

許多 ML,尤其是 DL 模型,很多完全就是“黑盒子”

可解釋性可以證明機(jī)器學(xué)習(xí)的推理是“正確”的

在計算機(jī)視覺中,模型可以解釋一個具體的標(biāo)簽是由哪個像素推導(dǎo)而出(例如,哪個像素是狗)

這樣,我們就可以知道模型到底是真的正確學(xué)習(xí)了還是因為某些錯誤的原因偶然得出了正確的預(yù)測標(biāo)簽。

下一步:用簡單易懂的語言解釋決策的合理性

結(jié)合文本生成基本原理和注意力視覺化可以深入解釋決策原理。

對于特定問題和圖像, Pointing 和 ustification Explanation (PJ-X) 模型預(yù)測答案和多模態(tài)的解釋都指向決策的視覺證據(jù)并提供文本。多模式解釋可以生成更好的視覺和文本解釋。

對抗攻擊

對抗攻擊意味著現(xiàn)實世界中將存在嚴(yán)重的安全風(fēng)險

受到對抗攻擊之后,原來可以檢測到穿越斑馬線行人的計算機(jī)視覺系統(tǒng)就再也“看”不到他們了。

當(dāng)自動駕駛車輛上路之后,這顯然會造成巨大的安全隱患。

谷歌的 AutoML 自動學(xué)習(xí)系統(tǒng)可以找到計算機(jī)視覺任務(wù)的最佳模型。AutoML 遍歷架構(gòu)搜索空間,找到兩個可以集成到一個優(yōu)于所有現(xiàn)有人造模型的最終模型(NASNet,右圖)的新單元設(shè)計(正常和縮小,左圖)。

分布式 Federated Learning 學(xué)習(xí)分散數(shù)據(jù)采集和模型訓(xùn)練

大型技術(shù)公司集中了大量的用戶數(shù)據(jù)。社區(qū)現(xiàn)在開始通過創(chuàng)建工具來分散數(shù)據(jù)所有權(quán)。OpenMined 這個 AI 模型本身是由模型所有者加密的,因此用戶無法竊取。而用戶數(shù)據(jù)則保留在用戶本地設(shè)備,并可訪問更新模型參數(shù)。隨后,所有者聚合用戶參數(shù)更改,再統(tǒng)一進(jìn)行更新。

Federated learning 分散數(shù)據(jù)獲取和模型訓(xùn)練

谷歌使用 Federated learning 訓(xùn)練其移動鍵盤預(yù)測模型 Gboard

第二部分:全球人才供需分布

人才供給: Element AI 預(yù)計全球有 22000 名 AI 研究者和工程師擁有博士學(xué)位

全球僅有 3000 名可用的 AI 人才勞動力;亞洲市場緊追西方市場;中國同業(yè)互查公開發(fā)表數(shù)量超過美國。

Element AI 預(yù)計全球有 5000 名高級 AI 研究者

美國是全球 AI 人才的溫床,崗位空缺 10k,是人才交流最集中的地方

人才分布:眾所周知,谷歌是最大的 AI 人才雇主

2017 年 ICML 6.3% 的論文的作者來自谷歌 /DeepMind

今年 ICML 論文作者來自谷歌 /DeepMind 的論文數(shù)量相比 2017 年翻了一倍

2017 ICML 谷歌貢獻(xiàn)的論文最多

在 NIPS 大會上,谷歌&DeepMind 論文作者數(shù)量占主導(dǎo)

需求:機(jī)器學(xué)習(xí)工程師薪水持續(xù)上漲

據(jù)《紐約時報》報道,一般來說,剛出校門的博士生或有若干年工作經(jīng)驗但教育水平低于博士的 AI 專家年薪可以達(dá)到 30 萬 -50 萬美元,或通過持有公司股票可能得到更高的薪水。

“在 DeepMind,員工規(guī)模擴(kuò)大到 400 名,成本達(dá)到 1.38 億美元,每名員工成本約為 34500 美元。”

“OpenAI 2016 年為研究負(fù)責(zé)人 Ilya Sutskever 支付了 190 萬美元的薪酬,為 Ian Goodfellow 支付的薪酬超過 80 萬美元。”

據(jù)百度前主管 Thomas Liang 估計,AI 行業(yè)薪資水平較 2014 年翻了一倍。

兩則爭議案例:《谷歌自動駕駛負(fù)責(zé)人薪酬 1.2 億美元,他卻投入 Uber 的懷抱》、《Uber 和 Waymo 以 2.4 億美元達(dá)成和解》

機(jī)器學(xué)習(xí)從業(yè)人員多樣性:參加 NIPS 會議的女性數(shù)量每年小幅增加。

第三部分:行業(yè)

關(guān)于 AI 的知識產(chǎn)權(quán)集中在 GAFAMBAT(谷歌、蘋果、Facebook、亞馬遜、微軟、百度、阿里巴巴、騰訊)這幾家巨頭公司,它們每年的研發(fā)費用達(dá)數(shù)十億美元。

云服務(wù)巨頭正在通過 API 建起各自的城墻

谷歌通過其云生態(tài)投入大量資金宣傳 ML 服務(wù),亞馬遜、谷歌等公司也在做著同樣的事情。

谷歌 TensorFlow 在機(jī)器學(xué)習(xí)框架之戰(zhàn)中勝出,但是戰(zhàn)局變化迅速

這意味著谷歌贏得了開發(fā)者的擁護(hù),借此打造了一條云服務(wù)通道,讓一代開發(fā)者和研究人員使用他們的技術(shù)并不斷改進(jìn)。他們的開放戰(zhàn)略也解決了一些潛在的競爭對手。然而,實踐者卻感覺到這一領(lǐng)域潛藏巨大的不確定性。選擇錯誤的框架會產(chǎn)生嚴(yán)重的后果,不僅包括重構(gòu)成本。

醫(yī)藥行業(yè)

目前,醫(yī)藥行業(yè)的發(fā)展進(jìn)程慢且價格昂貴。

在醫(yī)療行業(yè),機(jī)器學(xué)習(xí)可用于開發(fā)新藥,或者改變現(xiàn)有藥物的用途。

在保健行業(yè),機(jī)器學(xué)習(xí)可用于醫(yī)療成像、液體活檢等。

預(yù)計相關(guān)公司產(chǎn)品通過臨床試驗和監(jiān)管檢測之后將會采取更多行動。

政府與國防

民眾級監(jiān)控應(yīng)用開始在中國興起

中國政府繼續(xù)推廣使用計算機(jī)視覺監(jiān)控軟件。2017 年末,中國共有 1.7 億臺閉路監(jiān)控器。此監(jiān)控網(wǎng)絡(luò)將在 3 年內(nèi)將增長至 4 億臺。成立 4 年的商湯科技遙遙領(lǐng)先,2018 年 5 月獲得 C 輪融資后估值超過 450 億美元。

在美國,谷歌和 Clarifai 因與五角大樓合作軍事項目 Project Maven 遭到抗議,其中谷歌 4500 多名員工聯(lián)合簽署公開信要求谷歌停止該協(xié)議。

受劍橋分析公司丑聞事件影響,個人數(shù)據(jù)隱私問題成為焦點,數(shù)據(jù)保護(hù)和匿名成為人們關(guān)心的話題。其中歐盟的 GDPR 已于 2018 年 5 月生效,以保護(hù)用戶數(shù)據(jù)隱私。

在數(shù)據(jù)保護(hù)和信息匿名方面,機(jī)器學(xué)習(xí)可以用于:

人工數(shù)據(jù)合成:訓(xùn)練機(jī)器學(xué)習(xí)模型學(xué)習(xí)源數(shù)據(jù)的關(guān)鍵數(shù)據(jù)特性,并生成合成數(shù)據(jù)以保留這些特性。

混淆敏感數(shù)據(jù):檢測敏感數(shù)據(jù)字段并對其進(jìn)行匿名處理,同時保留敏感數(shù)據(jù)重要特征,使機(jī)器學(xué)習(xí)模型仍然可以學(xué)習(xí)有用的信息。

衛(wèi)星數(shù)據(jù)

隨著微型衛(wèi)星的發(fā)展,部件成本和發(fā)射成本降低,向地傳輸架構(gòu)逐漸完善,衛(wèi)星數(shù)據(jù)的成本隨之降低,分辨率和頻率不斷提高。

在衛(wèi)星數(shù)據(jù)領(lǐng)域,機(jī)器學(xué)習(xí)可用于保險、金融和農(nóng)業(yè)。

網(wǎng)絡(luò)安全

云計算、移動設(shè)備和更多聯(lián)網(wǎng)供應(yīng)鏈意味著網(wǎng)絡(luò)攻擊的風(fēng)險在增加。但是,網(wǎng)絡(luò)安全從業(yè)人員的缺口卻越來越大。機(jī)器學(xué)習(xí)能夠以靈活的方式從過去的攻擊中學(xué)習(xí),并自動進(jìn)行處理,節(jié)約時間。

在網(wǎng)絡(luò)安全領(lǐng)域,機(jī)器學(xué)習(xí)可用于網(wǎng)絡(luò)和終端安全、內(nèi)部威脅檢測。

庫房自動化

電商的發(fā)展對庫房分揀提出了更高的要求,勞動力和庫房空間的稀缺也促使電商采用更多的機(jī)器人。零售商在亞馬遜收購 kiva 以及對該領(lǐng)域的投資之后做出了反應(yīng)。

在庫房自動化領(lǐng)域,機(jī)器學(xué)習(xí)應(yīng)用包括機(jī)器人、庫房管理系統(tǒng)等。

藍(lán)領(lǐng)手工操作

計算機(jī)視覺部件成本降低,技術(shù)提高,這意味著機(jī)器人的價格將會比各種藍(lán)領(lǐng)工人的手工操作成本更低。

機(jī)器學(xué)習(xí)可用于房屋建造、清潔、安保等。

農(nóng)業(yè):室內(nèi)和室外農(nóng)場

2050 年,全球人口將從 76 億增長值 96 億,糧食產(chǎn)量需要提高 70% 才能滿足需求。農(nóng)場和溫室里配備機(jī)器人、控制系統(tǒng)、聯(lián)網(wǎng)設(shè)備成為解決糧食問題的新途徑。

機(jī)器學(xué)習(xí)可用于溫室控制系統(tǒng)、立體農(nóng)場、農(nóng)作物和動物健康監(jiān)測、農(nóng)作物收割等。

自動化

在自動化領(lǐng)域,機(jī)器學(xué)習(xí)可用于共享自動駕駛車輛、最后一公里物流自動化、仿真環(huán)境、街道地圖和軟件開發(fā)自動化等。

金融

在金融領(lǐng)域,機(jī)器學(xué)習(xí)可用于資產(chǎn)管理、信用貸款、預(yù)防詐騙。企業(yè)自動化。

機(jī)器學(xué)習(xí)可用于機(jī)器人處理自動化、文件數(shù)字化、軟件開發(fā)自動化。

材料科學(xué)

在材料科學(xué)領(lǐng)域,機(jī)器學(xué)習(xí)與醫(yī)藥行業(yè)的應(yīng)用相似,可用于學(xué)習(xí)材料科學(xué)發(fā)現(xiàn)的規(guī)律。

第四部分:政策

公眾對自動化的態(tài)度調(diào)研

根據(jù)兩家美國大型調(diào)研機(jī)構(gòu)調(diào)查結(jié)果顯示:

皮尤研究中心

民眾越來越意識到自動化對工作的影響,18% 的美國人表示他們知道有人因為自動化失業(yè),薪資或工作時長減少。

年輕人、兼職、西班牙人和美國低收入人群反映受到影響最大

自動化將引起不公正的擔(dān)憂越來越大

對 AI 的樂觀程度

大部分人認(rèn)為 AI 會改善生活

但 AI 也會犧牲隱私

并且 AI 會消滅一些工作崗位

大部分人認(rèn)為 AI 是對人類的威脅

應(yīng)該由政府監(jiān)管

雖然美國目前仍然是 AI 領(lǐng)頭羊

但中國在 AI 領(lǐng)域?qū)⒃谑陜?nèi)趕超美國

那么,美國的勞動力市場實際上有什么變化呢?調(diào)查發(fā)現(xiàn)這些變化主要體現(xiàn)在以下幾個方面;

美國自動化程度雖然提高,但失業(yè)率卻達(dá) 17 年來最低

常規(guī)工作發(fā)展停滯

工資水平提高落后于工作崗位增長

勞動產(chǎn)量與每小時報酬不成正比

勞動力所得份額穩(wěn)步下降

工人收入變動幅度加大

但是,自動化在導(dǎo)致美國勞動力市場現(xiàn)狀中起到多大的作用不得而知,關(guān)于機(jī)器學(xué)習(xí)對勞動力市場的影響也出現(xiàn)了兩極分化的觀點:其中一種觀點認(rèn)為無需擔(dān)心,歷史上科技進(jìn)步總會創(chuàng)造更多的工作,這次也不例外;另一種觀點則是憂心忡忡,認(rèn)為這次革命與以往不同,人類將會創(chuàng)造更多智能,減少薪酬較高的工作,新增的工作崗位數(shù)量將少于消失的工作。

AI 國家主義

隨著 AI 領(lǐng)域競爭的加強(qiáng),中國、法國、英國、美國、歐盟等相繼制定了國家層面的 AI 發(fā)展戰(zhàn)略,AI 國家主義傾向越來越明顯。

目前,除了在數(shù)據(jù)獲取方面,美國在其他方面均領(lǐng)先于中國。

美國越來越多地通過 CFIUS(美國外國投資委員會)來阻止企業(yè)收購美國公司。

原因:雖然中國半導(dǎo)體行業(yè)規(guī)模比不上美國,但中國半導(dǎo)體年進(jìn)口額已達(dá) 2600 億美元,并且在不斷收購半導(dǎo)體公司。

第五部分:預(yù)測

未來 12 個月的 8 個預(yù)測:

位于中國的實驗室取得重大研究突破。

DeepMind 成功應(yīng)用 RL 學(xué)習(xí)在《星際爭霸》游戲中取得突破性成果。

深度學(xué)習(xí)繼續(xù)仍然是討論的焦點,重大替代方法不會出現(xiàn)。

使用機(jī)器學(xué)習(xí)發(fā)現(xiàn)的第一種治療藥物在試驗中產(chǎn)生積極的結(jié)果。

總部位于中國和美國的公司收購歐洲機(jī)器學(xué)習(xí)公司的總額超過 50 億美元。

經(jīng)合組織國家政府阻止總部位于美國或中國的技術(shù)公司收購一家領(lǐng)先的機(jī)器學(xué)習(xí)公司(估值> 1 億美元)。

爭搶***和韓國半導(dǎo)體公司明顯成為中美貿(mào)易戰(zhàn)的一部分

一家大型研究機(jī)構(gòu)因地緣政治原因未公開重大研究成果,因而“走向黑暗”

第六部分:總結(jié)

本報告力圖將過去一年內(nèi)機(jī)器學(xué)習(xí)領(lǐng)域所有值得注意的進(jìn)步做出匯總,我們相信,AI 將成為未來科技發(fā)展的強(qiáng)力催化劑,更多地了解該領(lǐng)域的變化可以幫助我們更好地適應(yīng)未來的變化。感謝大家的閱讀!

聲明:本文內(nèi)容及配圖由入駐作者撰寫或者入駐合作網(wǎng)站授權(quán)轉(zhuǎn)載。文章觀點僅代表作者本人,不代表電子發(fā)燒友網(wǎng)立場。文章及其配圖僅供工程師學(xué)習(xí)之用,如有內(nèi)容侵權(quán)或者其他違規(guī)問題,請聯(lián)系本站處理。 舉報投訴
  • 智能機(jī)器
    +關(guān)注

    關(guān)注

    0

    文章

    96

    瀏覽量

    20268
  • ai技術(shù)
    +關(guān)注

    關(guān)注

    1

    文章

    1259

    瀏覽量

    24252

原文標(biāo)題:【2018 AI全景報告】全球AI人才供需分布圖,可用AI專才僅3000

文章出處:【微信號:AI_era,微信公眾號:新智元】歡迎添加關(guān)注!文章轉(zhuǎn)載請注明出處。

收藏 人收藏

    評論

    相關(guān)推薦

    未來AI大模型的發(fā)展趨勢

    未來AI大模型的發(fā)展趨勢將呈現(xiàn)多元化和深入化的特點,以下是對其發(fā)展趨勢的分析: 一、技術(shù)驅(qū)動與創(chuàng)新 算法與架構(gòu)優(yōu)化 : 隨著Transfor
    的頭像 發(fā)表于 10-23 15:06 ?447次閱讀

    AI for Science:人工智能驅(qū)動科學(xué)創(chuàng)新》第4章-AI與生命科學(xué)讀后感

    。 4. 對未來生命科學(xué)發(fā)展的展望 在閱讀這一章后,我對未來生命科學(xué)的發(fā)展充滿了期待。我相信,在人工智能技術(shù)的推動下,生命科學(xué)將取得更加顯著的進(jìn)展。例如,在藥物研發(fā)領(lǐng)域,
    發(fā)表于 10-14 09:21

    AI for Science:人工智能驅(qū)動科學(xué)創(chuàng)新》第二章AI for Science的技術(shù)支撐學(xué)習(xí)心得

    的物理可信度,還為科學(xué)研究提供了新的視角和方法。 5. 挑戰(zhàn)與未來展望 第二章也提到了AI for Science面臨的挑戰(zhàn)和未來展望。盡管AI技術(shù)
    發(fā)表于 10-14 09:16

    激光軟釬焊技術(shù):SMT領(lǐng)域內(nèi)的現(xiàn)狀未來發(fā)展趨勢(下)

    作業(yè)。隨著電子技術(shù)的快速發(fā)展,激光軟釬焊技術(shù)在提升焊接質(zhì)量、實現(xiàn)生產(chǎn)效率的飛躍方面展現(xiàn)出巨大潛力。本文深入探討了激光軟釬焊技術(shù)在SMT領(lǐng)域的應(yīng)用現(xiàn)狀
    的頭像 發(fā)表于 09-30 10:49 ?275次閱讀
    激光軟釬焊<b class='flag-5'>技術(shù)</b>:SMT領(lǐng)域內(nèi)的<b class='flag-5'>現(xiàn)狀</b>與<b class='flag-5'>未來</b><b class='flag-5'>發(fā)展</b>趨勢(下)

    激光軟釬焊技術(shù):SMT領(lǐng)域內(nèi)的現(xiàn)狀未來發(fā)展趨勢(上)

    作業(yè)。隨著電子技術(shù)的快速發(fā)展,激光軟釬焊技術(shù)在提升焊接質(zhì)量、實現(xiàn)生產(chǎn)效率的飛躍方面展現(xiàn)出巨大潛力。本文深入探討了激光軟釬焊技術(shù)在SMT領(lǐng)域的應(yīng)用現(xiàn)狀
    的頭像 發(fā)表于 09-29 13:57 ?281次閱讀
    激光軟釬焊<b class='flag-5'>技術(shù)</b>:SMT領(lǐng)域內(nèi)的<b class='flag-5'>現(xiàn)狀</b>與<b class='flag-5'>未來</b><b class='flag-5'>發(fā)展</b>趨勢(上)

    工控機(jī)廠家發(fā)展現(xiàn)狀未來趨勢

    中發(fā)揮著重要作用。本文將探討工控機(jī)廠家的發(fā)展現(xiàn)狀、市場需求、技術(shù)創(chuàng)新以及未來趨勢。一、工控機(jī)廠家發(fā)展現(xiàn)狀工控機(jī)廠家是指專門從事工業(yè)控制計算機(jī)設(shè)計、研發(fā)、生產(chǎn)和銷售的企業(yè)。在中國
    的頭像 發(fā)表于 09-29 11:01 ?471次閱讀
    工控機(jī)廠家<b class='flag-5'>發(fā)展現(xiàn)狀</b>及<b class='flag-5'>未來</b>趨勢

    2024國產(chǎn)測徑儀的現(xiàn)狀?

    技術(shù)的不斷進(jìn)步和性能的提升,越來越多的用戶開始選擇國產(chǎn)測徑儀替代進(jìn)口產(chǎn)品。這不僅降低了用戶的采購成本,還促進(jìn)了國內(nèi)測徑儀產(chǎn)業(yè)的發(fā)展和壯大。 五、市場趨勢與前景 ?市場趨勢:未來,隨著制造業(yè)的升級迭代
    發(fā)表于 09-26 16:47

    開啟全新AI時代 智能嵌入式系統(tǒng)快速發(fā)展——“第六屆國產(chǎn)嵌入式操作系統(tǒng)技術(shù)與產(chǎn)業(yè)發(fā)展論壇”圓滿結(jié)束

    航空計算技術(shù)研究所研究員崔西寧做了“AI時代的機(jī)載嵌入式操作系統(tǒng)”專題報告。 崔西寧回顧了機(jī)載軟件技術(shù)發(fā)展歷程,介紹機(jī)載智能計算的演進(jìn)之路,分享了天脈操作系統(tǒng)現(xiàn)狀
    發(fā)表于 08-30 17:24

    國產(chǎn)光電耦合器:2024發(fā)展現(xiàn)狀未來前景

    隨著全球電子技術(shù)的快速發(fā)展,光電耦合器(光耦)在各種應(yīng)用場景中發(fā)揮著越來越重要的作用。近年來,國產(chǎn)光電耦合器憑借其技術(shù)進(jìn)步和性價比優(yōu)勢,在國內(nèi)外市場上取得了顯著的成就。本文將深入探討2024
    的頭像 發(fā)表于 08-16 16:41 ?422次閱讀
    國產(chǎn)光電耦合器:2024<b class='flag-5'>年</b>的<b class='flag-5'>發(fā)展現(xiàn)狀</b>與<b class='flag-5'>未來</b>前景

    Imagination 引領(lǐng)邊緣計算和AI創(chuàng)新,擁抱AI未來發(fā)展

    ,致力于推動技術(shù)創(chuàng)新,擁抱人工智能的未來發(fā)展。同時他也介紹了Imagination在計算領(lǐng)域的戰(zhàn)略布局、產(chǎn)品技術(shù)以及對未來
    的頭像 發(fā)表于 06-28 08:28 ?509次閱讀
    Imagination 引領(lǐng)邊緣計算和<b class='flag-5'>AI</b>創(chuàng)新,擁抱<b class='flag-5'>AI</b><b class='flag-5'>未來</b><b class='flag-5'>發(fā)展</b>

    中國AI芯片行業(yè),自主突破與未來展望

    在全球科技競賽的舞臺上,中國AI芯片行業(yè)正面臨前所未有的挑戰(zhàn)與機(jī)遇。近日,Gartner研究副總裁盛陵海在一場分享會上深入剖析了中國AI芯片行業(yè)的現(xiàn)狀未來
    的頭像 發(fā)表于 06-19 17:02 ?644次閱讀

    亞太地區(qū)AI發(fā)展趨勢及未來預(yù)測

    IDC報告指出,亞太區(qū)AI技術(shù)及應(yīng)用發(fā)展迅猛,預(yù)計至2027,該地區(qū)AI支出將達(dá)907億美元,2022
    的頭像 發(fā)表于 05-15 16:47 ?659次閱讀

    2024中國AI大模型產(chǎn)業(yè)發(fā)展報告

    日前,人民網(wǎng)財經(jīng)研究院、至頂科技聯(lián)合發(fā)布《開啟智能新時代:2024中國AI大模型產(chǎn)業(yè)發(fā)展報告》(以下簡稱《報告》),對于AI大模型產(chǎn)業(yè)發(fā)展
    的頭像 發(fā)表于 03-30 08:26 ?759次閱讀
    2024中國<b class='flag-5'>AI</b>大模型產(chǎn)業(yè)<b class='flag-5'>發(fā)展</b>報告

    AI視頻大爆發(fā)!2023AI視頻生成領(lǐng)域的現(xiàn)狀全盤點

    2023,也是AI視頻元年。過去一究竟有哪些爆款應(yīng)用誕生,未來視頻生成領(lǐng)域面臨的難題還有哪些?
    的頭像 發(fā)表于 02-20 10:40 ?1145次閱讀
    <b class='flag-5'>AI</b>視頻<b class='flag-5'>年</b>大爆發(fā)!2023<b class='flag-5'>年</b><b class='flag-5'>AI</b>視頻生成領(lǐng)域的<b class='flag-5'>現(xiàn)狀</b>全盤點

    未來不變的AI是什么?吳恩達(dá)等專家關(guān)于2024AI發(fā)展趨勢的預(yù)測

    隨著2024的到來,人工智能領(lǐng)域正迎來前所未有的變革和發(fā)展。從深度學(xué)習(xí)到自然語言處理,AI技術(shù)的每一個分支都在經(jīng)歷著快速的進(jìn)步。在這個關(guān)鍵的時刻,業(yè)界專家們提出了對
    的頭像 發(fā)表于 01-04 11:36 ?863次閱讀
    <b class='flag-5'>未來</b>十<b class='flag-5'>年</b>不變的<b class='flag-5'>AI</b>是什么?吳恩達(dá)等專家關(guān)于2024<b class='flag-5'>年</b><b class='flag-5'>AI</b><b class='flag-5'>發(fā)展</b>趨勢的預(yù)測