精品国产人成在线_亚洲高清无码在线观看_国产在线视频国产永久2021_国产AV综合第一页一个的一区免费影院黑人_最近中文字幕MV高清在线视频

0
  • 聊天消息
  • 系統(tǒng)消息
  • 評論與回復(fù)
登錄后你可以
  • 下載海量資料
  • 學(xué)習(xí)在線課程
  • 觀看技術(shù)視頻
  • 寫文章/發(fā)帖/加入社區(qū)
會員中心
創(chuàng)作中心

完善資料讓更多小伙伴認(rèn)識你,還能領(lǐng)取20積分哦,立即完善>

3天內(nèi)不再提示

51單片機(jī)手動復(fù)位和手動/上電復(fù)位的區(qū)別和解決方案

ss ? 作者:工程師譚軍 ? 2018-08-08 10:21 ? 次閱讀

51單片機(jī)復(fù)位電路中為什么要分手動復(fù)位和上電復(fù)位你知道是為了什么嗎?上電復(fù)位和手動復(fù)位有什么區(qū)別呢?本文將為你介紹關(guān)于在51單片機(jī)中上電復(fù)位和手動復(fù)位的區(qū)別及解決方案。

復(fù)位電路

復(fù)位電路是一種用來使電路恢復(fù)到起始狀態(tài)的電路設(shè)備,它的操作原理與計算器有著異曲同工之妙,只是啟動原理和手段有所不同。復(fù)位電路,就是利用它把電路恢復(fù)到起始狀態(tài)。就像計算器的清零按鈕的作用一樣,以便回到原始狀態(tài),重新進(jìn)行計算。

單片機(jī)在啟動時都需要復(fù)位,以使CPU及系統(tǒng)各部件處于確定的初始狀態(tài),并從初態(tài)開始工作。89系列單片機(jī)的復(fù)位信號是從RST引腳輸入到芯片內(nèi)的施密特觸發(fā)器中的。當(dāng)系統(tǒng)處于正常工作狀態(tài)時,且振蕩器穩(wěn)定后,如果RST引腳上有一個高電平并維持2個機(jī)器周期(24個振蕩周期)以上,則CPU就可以響應(yīng)并將系統(tǒng)復(fù)位。單片機(jī)系統(tǒng)的復(fù)位方式有:手動按鈕復(fù)位和上電復(fù)位。

在復(fù)位電路中除了上電復(fù)位外,還有手動復(fù)位。

電容在上接高電平,電阻在下接地,中間為RST。這種復(fù)位電路為高電平復(fù)位。

工作原理是:通電時,電容兩端相當(dāng)于是短路,于是RST引腳上為高電平,然后電源通過電阻對電容充電,RST端電壓慢慢下降,降到一定程度,即為低電平,單片機(jī)開始正常工作。

首先RST保持兩個機(jī)器周期以上的高電平時自動復(fù)位

1、上電復(fù)位:上電瞬間,電容充電電流最大,電容相當(dāng)于短路,RST端為高電平,自動復(fù)位;電容兩端的電壓達(dá)到電源電壓時,電容充電電流為零,電容相當(dāng)于開路,RST端為低電平,程序正常運行。

2、手動復(fù)位:首先經(jīng)過上電復(fù)位,當(dāng)按下按鍵時,RST直接與VCC相連,為高電平形成復(fù)位,同時電解電容被短路放電;按鍵松開時,VCC對電容充電,充電電流在電阻上,RST依然為高電平,仍然是復(fù)位,充電完成后,電容相當(dāng)于開路,RST為低電平,正常工作。

51單片機(jī)手動復(fù)位和手動/上電復(fù)位的區(qū)別和解決方案

手動復(fù)位

手動按鈕復(fù)位需要人為在復(fù)位輸入端RST上加入高電平。一般采用的辦法是在RST端和正電源Vcc之間接一個按鈕。當(dāng)人為按下按鈕時,則Vcc的+5V電平就會直接加到RST端。手動按鈕復(fù)位的電路如所示。由于人的動作再快也會使按鈕保持接通達(dá)數(shù)十毫秒,所以,完全能夠滿足復(fù)位的時間要求。

51單片機(jī)手動復(fù)位和手動/上電復(fù)位的區(qū)別和解決方案

手動復(fù)位圖

上電復(fù)位

AT89C51的上電復(fù)位電路如下圖所示,只要在RST復(fù)位輸入引腳上接一電容至Vcc端,下接一個電阻到地即可。對于CMOS型單片機(jī),由于在RST端內(nèi)部有一個下拉電阻,故可將外部電阻去掉,而將外接電容減至1uF。上電復(fù)位的工作過程是在加電時,復(fù)位電路通過電 容加給RST端一個短暫的高電平信號,此高電平信號隨著Vcc對電容的充電過程而逐漸回落,即RST端的高電平持續(xù)時間取決于電容的充電時間。為了保證系統(tǒng)能夠可靠地復(fù)位,RST端的高電平信號必須維持足夠長的時間。上電時,Vcc的上升時間約為10ms,而振蕩器的起振時間取決于振蕩頻率,如晶振頻率為10MHz,起振時間為1ms;晶振頻率為1MHz,起振時間則為10ms。在圖2的復(fù)位電路中,當(dāng)Vcc掉電時,必然會使RST端電壓迅速下降到0V以下,但是,由于內(nèi)部電路的限制作用,這個負(fù)電壓將不會對器件產(chǎn)生損害。另外,在復(fù)位期間,端口引腳處于隨機(jī)狀態(tài),復(fù)位后,系統(tǒng)將端口置為全“l(fā)”態(tài)。如果系統(tǒng)在上電時得不到有效的復(fù)位,則程序計數(shù)器PC將得不到一個合適的初值,因此,CPU可能會從一個未被定義的位置開始執(zhí)行程序。

51單片機(jī)手動復(fù)位和手動/上電復(fù)位的區(qū)別和解決方案

上電復(fù)位圖

復(fù)位電路設(shè)計

單片機(jī)在可靠的復(fù)位之后,才會從0000H地址開始有序的執(zhí)行應(yīng)用程序。同時,復(fù)位電路也是容易受到外部噪 聲干擾的敏感部分之一。因此,復(fù)位電路應(yīng)該具有兩個主要的功能:

1. 必須保證系統(tǒng)可靠的進(jìn)行復(fù)位;

2. 必須具有一定的抗干擾的能力;

復(fù)位電路的RC選擇

復(fù)位電路應(yīng)該具有上電復(fù)位和手動復(fù)位的功能。以MCS-51單片機(jī)為例,復(fù)位脈沖的高電平寬度必須大于2個機(jī)器周期,若系統(tǒng)選用6MHz晶振,則一個機(jī)器周期為2us,那么復(fù)位脈沖寬度最小應(yīng)為4us。在實際應(yīng)用系統(tǒng)中,考慮到電源的穩(wěn)定時間,參數(shù)漂移,晶振穩(wěn)定時間以及復(fù)位的可靠性等因素,必須有足夠的余量。圖1是利用RC充電原理實現(xiàn)上電復(fù)位的電路設(shè)計。實踐證明,上電瞬間RC電路充電,RESET引腳出現(xiàn)正脈沖。只要RESET端保持10ms以上的高電平,就能使單片機(jī)有效的復(fù)位。

51單片機(jī)手動復(fù)位和手動/上電復(fù)位的區(qū)別和解決方案

對于圖1-a中的電容C兩端的電壓(即復(fù)位信號)是一個時間的函數(shù):

u(t)=VCC*[1-exp(-t/RC)]

對于圖1-b中的電阻R兩端的電壓(即復(fù)位信號)也是一個時間的函數(shù):

u(t)=VCC*exp(-t/RC)

其中的VCC為電源電壓,RC為RC電路的時間常數(shù)=1K*22uF=22ms。有了這個公式,我們可以更方便的對以上電路進(jìn)行透徹的分析。

圖1-a中非門的最小輸入高電平UIH=2.0v,當(dāng)充電時間t=0.6RC時,則充電電壓u(t)=0.45VCC=0.45*5V,約等于2V,其中t即為復(fù)位時間。圖a中時間常數(shù)=22ms,則t=22ms*0.6=13ms。

復(fù)位電路的可靠性與抗干擾性分析

單片機(jī)復(fù)位電路端口的干擾主要來自電源和按鈕傳輸線串入的噪聲。這些噪聲雖然不會完全導(dǎo)致系統(tǒng)復(fù)位,但有時會破壞CPU內(nèi)的程序狀態(tài)字的某些位的狀態(tài),對控制產(chǎn)生不良影響。

1.電路結(jié)構(gòu)形式與抗干擾性能

以圖1為例,電源噪聲干擾過程示意圖中分別繪出了A點和B點的電壓擾動波形。

有圖2可以看出,圖2(a)實質(zhì)上是個低通濾波環(huán)節(jié),對于脈沖寬度小于3RC的干擾有很好的抑制作用;圖2(b)實質(zhì)上是個高通濾波環(huán)節(jié),對脈沖干擾沒有抑制作用。由此可見,對于圖1所示的兩種復(fù)位電路,a的抗干擾電源噪聲的能力要優(yōu)于b。

2. 復(fù)位按鈕傳輸線的影響

復(fù)位按鈕一般都是安裝在操作面板上,有較長的傳輸線,容易引起電磁感應(yīng)干擾。按鈕傳輸線應(yīng)采用雙絞線(具有抑制電磁感應(yīng)干擾的性能),并遠(yuǎn)離交流用電設(shè)備。在印刷電路板上,單片機(jī)復(fù)位端口處并聯(lián)0.01-0.1uF的高頻電容,或配置使密特電路,將提高對串入噪聲的抑制能力。

51單片機(jī)手動復(fù)位和手動/上電復(fù)位的區(qū)別和解決方案

供電電源穩(wěn)定過程對復(fù)位的影響

單片機(jī)系統(tǒng)復(fù)位必須在CPU得到穩(wěn)定的電源后進(jìn)行,一次上電復(fù)位電路RC參數(shù)設(shè)計應(yīng)考慮穩(wěn)定的過渡時間。

為了克服直流電源穩(wěn)定過程對上電自動復(fù)位的影響,可采用如下措施:

(1) 將電源開關(guān)安裝在直流側(cè),合上交流電源,待直流電壓穩(wěn)定后再合供電開關(guān)K,如下圖所示。

51單片機(jī)手動復(fù)位和手動/上電復(fù)位的區(qū)別和解決方案

采用帶電源檢測的復(fù)位電路,如下圖所示。合理配置電阻R3、R4的阻值和選擇穩(wěn)壓管DW的擊穿電壓,使VCC未達(dá)到額定值之前,三極管BG截止,VA點電平為低,電容器C不充電;當(dāng)VCC穩(wěn)定之后,DW擊穿,三極管BG飽和導(dǎo)通,致使VA點位高電平,對電容C充電,RESET為高電平,單片機(jī)開始復(fù)位過程。當(dāng)電容C上充電電壓達(dá)到2V時,RESET為低電平,復(fù)位結(jié)束。

51單片機(jī)手動復(fù)位和手動/上電復(fù)位的區(qū)別和解決方案

并聯(lián)放電二極管的必要性

在復(fù)位電路中,放電二極管D不可缺少。當(dāng)電源斷電后,電容通過二極管D迅速放電,待電源恢復(fù)時便可實現(xiàn)可靠上電自動復(fù)位。若沒有二極管D,當(dāng)電源因某種干擾瞬間斷電時,由于C不能迅速將電荷放掉,待電源恢復(fù)時,單片機(jī)不能上電自動復(fù)位,導(dǎo)致程序運行失控。電源瞬間斷電干擾會導(dǎo)致程序停止正常運行,形成程序“亂飛”或進(jìn)入“死循環(huán)”。若斷電干擾脈沖較寬,可以使RC迅速放電,待電源恢復(fù)后通過上電自動復(fù)位,使程序進(jìn)入正常狀態(tài);若斷電干擾脈沖較窄,斷電瞬間RC不能充分放電,則電源恢復(fù)后系統(tǒng)不能上電自動復(fù)位。

I/O接口芯片的延時復(fù)位

在單片機(jī)系統(tǒng)中,某些I/O接口芯片的復(fù)位端口與單片機(jī)的復(fù)位端口往往連在一起,即統(tǒng)一復(fù)位。接口芯片由于生產(chǎn)廠家不同,復(fù)位時間也稍有不同;復(fù)位線較長而又較大的分布電容,導(dǎo)致這些接口的復(fù)位過程滯后于單片機(jī)。工程實踐表明,當(dāng)單片機(jī)復(fù)位結(jié)束立即對這些I/O芯片進(jìn)行初始化操作時,往往導(dǎo)致失敗。因此,當(dāng)單片機(jī)進(jìn)入0000H地址后,首先執(zhí)行1-10ms的軟件延時,然后再對這些I/O芯片進(jìn)行初始化。

結(jié)語

為確保微機(jī)系統(tǒng)中電路穩(wěn)定可靠工作,復(fù)位電路是必不可少的一部分,復(fù)位電路的第一功能是上電復(fù)位。一般微機(jī)電路正常工作需要供電電源為5V±5%,即4.75~5.25V。由于微機(jī)電路是時序數(shù)字電路,它需要穩(wěn)定的時鐘信號,因此在電源上電時,只有當(dāng)VCC超過4.75V低于5.25V以及晶體振蕩器穩(wěn)定工作時,復(fù)位信號才會撤除,微機(jī)電路開始正常工作。

關(guān)于復(fù)位電路中上電復(fù)位和手動復(fù)位的介紹就到這里了,希望本文能對你有所幫助。

聲明:本文內(nèi)容及配圖由入駐作者撰寫或者入駐合作網(wǎng)站授權(quán)轉(zhuǎn)載。文章觀點僅代表作者本人,不代表電子發(fā)燒友網(wǎng)立場。文章及其配圖僅供工程師學(xué)習(xí)之用,如有內(nèi)容侵權(quán)或者其他違規(guī)問題,請聯(lián)系本站處理。 舉報投訴
  • 單片機(jī)
    +關(guān)注

    關(guān)注

    6032

    文章

    44522

    瀏覽量

    633177
  • 上電復(fù)位
    +關(guān)注

    關(guān)注

    1

    文章

    39

    瀏覽量

    15783
  • 手動復(fù)位
    +關(guān)注

    關(guān)注

    0

    文章

    3

    瀏覽量

    8257
收藏 人收藏

    評論

    相關(guān)推薦

    AVR單片機(jī)復(fù)位:看門狗復(fù)位電復(fù)位、掉電復(fù)位

    AVR單片機(jī)復(fù)位:看門狗復(fù)位、電復(fù)位、掉電復(fù)位看到大家對
    發(fā)表于 10-26 11:10

    什么是單片機(jī)電復(fù)位

    什么是單片機(jī)電復(fù)位眾所周知,單片機(jī)屬于數(shù)字電路,數(shù)字電路里只有0(低電平)和1(高電平)之分,單片機(jī)要么是高電平
    發(fā)表于 11-10 06:41

    單片機(jī)中的電復(fù)位是如何去實現(xiàn)的

    保證單片機(jī)能可靠地復(fù)位,必須使RST引腳至少保持兩個機(jī)器周期高電平,CPU 在第2個機(jī)器周期內(nèi)執(zhí)行內(nèi)部復(fù)位操作,以后每一一個機(jī)器周期重復(fù)一一次, 直至RST端電平變低。手動
    發(fā)表于 11-25 08:48

    80C51單片機(jī)電復(fù)位復(fù)位延時的時序分析

      80C51單片機(jī)電復(fù)位POR(Power On Reset)實質(zhì)就是電延時
    發(fā)表于 03-29 15:15 ?4039次閱讀
    80C<b class='flag-5'>51</b><b class='flag-5'>單片機(jī)</b>上<b class='flag-5'>電復(fù)位</b>和<b class='flag-5'>復(fù)位</b>延時的時序分析

    單片機(jī)電復(fù)位復(fù)位延時的時序分析

    單片機(jī)電復(fù)位復(fù)位延時的時序分析
    發(fā)表于 01-24 16:15 ?18次下載

    電復(fù)位和按鍵復(fù)位區(qū)別

    電復(fù)位是指電壓從無到有在RESET處會先處于高電平一段時間,然后由于該點通過電阻接地,則RESET該點的電平會逐漸的改變?yōu)榈碗娖?,從而使?b class='flag-5'>單片機(jī)
    發(fā)表于 10-20 15:24 ?11.7w次閱讀
    <b class='flag-5'>上</b><b class='flag-5'>電復(fù)位</b>和按鍵<b class='flag-5'>復(fù)位</b><b class='flag-5'>區(qū)別</b>

    80C51電復(fù)位復(fù)位延時的時序分析

    80C51單片機(jī)電復(fù)位POR(Pmver On Reset)實質(zhì)就是電延時
    發(fā)表于 04-13 16:05 ?15次下載

    單片機(jī)系統(tǒng)的復(fù)位方式有:手動按鈕復(fù)位電復(fù)位

    常用的上電或開關(guān)復(fù)位電路如圖3所示。電后,由于電容C3的充電和反相門的作用,使RST持續(xù)一段時間的高電平。當(dāng)單片機(jī)已在運行當(dāng)中時,按下復(fù)位鍵K后松開,也能使RST為一段時間的高電平,
    的頭像 發(fā)表于 11-23 16:18 ?7.1w次閱讀
    <b class='flag-5'>單片機(jī)</b>系統(tǒng)的<b class='flag-5'>復(fù)位</b>方式有:<b class='flag-5'>手動</b>按鈕<b class='flag-5'>復(fù)位</b>和<b class='flag-5'>上</b><b class='flag-5'>電復(fù)位</b>

    單片機(jī)電復(fù)位與欠壓復(fù)位的過程解析

    電復(fù)位:是由外部總線產(chǎn)生的一種異步復(fù)位單片機(jī)電壓監(jiān)測電路檢測到電源電壓VDD上升時,會產(chǎn)生一個電復(fù)
    發(fā)表于 03-23 15:14 ?9645次閱讀
    <b class='flag-5'>單片機(jī)</b>上<b class='flag-5'>電復(fù)位</b>與欠壓<b class='flag-5'>復(fù)位</b>的過程解析

    STM32電復(fù)位不正常 手動復(fù)位正常的原因資料下載

    電子發(fā)燒友網(wǎng)為你提供STM32電復(fù)位不正常 手動復(fù)位正常的原因資料下載的電子資料下載,更有其他相關(guān)的電路圖、源代碼、課件教程、中文資料、英文資料、參考設(shè)計、用戶指南、
    發(fā)表于 04-25 08:42 ?38次下載
    STM32<b class='flag-5'>上</b><b class='flag-5'>電復(fù)位</b>不正常 <b class='flag-5'>手動</b><b class='flag-5'>復(fù)位</b>正常的原因資料下載

    單片機(jī)基礎(chǔ)入門:什么是電復(fù)位復(fù)位電路怎么設(shè)計

    什么是單片機(jī)電復(fù)位眾所周知,單片機(jī)屬于數(shù)字電路,數(shù)字電路里只有0(低電平)和1(高電平)之分,單片機(jī)要么是高電平
    發(fā)表于 11-05 13:06 ?13次下載
    <b class='flag-5'>單片機(jī)</b>基礎(chǔ)入門:什么是<b class='flag-5'>上</b><b class='flag-5'>電復(fù)位</b>,<b class='flag-5'>復(fù)位</b>電路怎么設(shè)計

    51單片機(jī)(十二)—— 單片機(jī)復(fù)位

    復(fù)位、看門狗復(fù)位等。 我們實驗對應(yīng)的硬件復(fù)位電路,如下圖所示。 這個圖中集成了51單片機(jī)和AVR
    發(fā)表于 11-15 13:21 ?59次下載
    <b class='flag-5'>51</b><b class='flag-5'>單片機(jī)</b>(十二)—— <b class='flag-5'>單片機(jī)</b><b class='flag-5'>復(fù)位</b>

    單片機(jī)中的電復(fù)位手動復(fù)位

    保證單片機(jī)能可靠地復(fù)位,必須使RST引腳至少保持兩個機(jī)器周期高電平,CPU 在第2個機(jī)器周期內(nèi)執(zhí)行內(nèi)部復(fù)位操作,以后每一一個機(jī)器周期重復(fù)一一次, 直至RST端電平變低。手動
    發(fā)表于 11-17 10:06 ?69次下載
    <b class='flag-5'>單片機(jī)</b>中的<b class='flag-5'>上</b><b class='flag-5'>電復(fù)位</b> 和<b class='flag-5'>手動</b><b class='flag-5'>復(fù)位</b>

    stm32手動復(fù)位按鍵出的電容有什么作用?

    的目的是為了讓用戶可以手動復(fù)位系統(tǒng),從而使系統(tǒng)回到初始狀態(tài)。 在本文中,我們將會深入探討手動復(fù)位按鍵出的電容的作用,并分析其在STM32單片機(jī)
    的頭像 發(fā)表于 09-14 14:22 ?3810次閱讀

    單片機(jī)上位復(fù)位電路與按鍵與電復(fù)位區(qū)別

    單片機(jī)上位復(fù)位電路與按鍵與電復(fù)位區(qū)別? 單片機(jī)復(fù)位
    的頭像 發(fā)表于 10-17 18:17 ?2681次閱讀