精品国产人成在线_亚洲高清无码在线观看_国产在线视频国产永久2021_国产AV综合第一页一个的一区免费影院黑人_最近中文字幕MV高清在线视频

0
  • 聊天消息
  • 系統(tǒng)消息
  • 評論與回復(fù)
登錄后你可以
  • 下載海量資料
  • 學(xué)習(xí)在線課程
  • 觀看技術(shù)視頻
  • 寫文章/發(fā)帖/加入社區(qū)
會(huì)員中心
創(chuàng)作中心

完善資料讓更多小伙伴認(rèn)識你,還能領(lǐng)取20積分哦,立即完善>

3天內(nèi)不再提示

人臉識別究竟如何工作?亞馬遜、谷歌、IBM、微軟現(xiàn)在在用什么?

zhKF_jqr_AI ? 來源:未知 ? 作者:李倩 ? 2018-08-23 09:09 ? 次閱讀

有關(guān)人臉識別的項(xiàng)目我們已經(jīng)介紹了很多了,那么哪種人臉識別的API最好?本文將對比四種API,分別是亞馬遜Rekognition、谷歌Cloud Vision API、IBM Watson Visual Recognition以及微軟的Face API,從成功率、價(jià)格和速度三方面分析上述四種軟件服務(wù)商的產(chǎn)品

人臉識別究竟如何工作?

深入分析之前,首先讓我們探究一下人臉識別的工作原理

Viola-Jones的人臉識別

2001年,Paul Viola和Michael Jone開始了計(jì)算機(jī)視覺的革命,當(dāng)時(shí)的人臉識別技術(shù)并不成熟,識別準(zhǔn)確度較低,速度也很慢。直到提出了Viola-Jones人臉識別框架后,不僅成功率大大提高,而且還能實(shí)施進(jìn)行人臉識別。

自從上世紀(jì)90年代開展了各項(xiàng)人臉識別、目標(biāo)識別挑戰(zhàn)賽,這類技術(shù)得到了迅猛發(fā)展。

深度卷積神經(jīng)網(wǎng)絡(luò)

2010年,ImageNet視覺識別挑戰(zhàn)賽開始舉辦,前兩年,大部分參賽隊(duì)伍都用Fisher Vectors和支持向量機(jī)的結(jié)合。但2012年,一切都變了。

多倫多大學(xué)的團(tuán)隊(duì)(Alex Krizhevsky、Ilya Sutskever和Geoffrey Hinton)第一次在目標(biāo)物體識別任務(wù)上使用了深度卷積神經(jīng)網(wǎng)絡(luò),并拿到冠軍。他們使用的方法錯(cuò)誤率為15.4%,而第二名的錯(cuò)誤率為26.2%。到了2013年,前5名的隊(duì)伍全部都開始用深度卷積神經(jīng)網(wǎng)絡(luò)。

所以,神經(jīng)網(wǎng)絡(luò)到底怎么工作的呢?

亞馬遜、谷歌、IBM、微軟現(xiàn)在在用什么?

目前為止,各大公司仍然使用深度卷積神經(jīng)網(wǎng)絡(luò)或者結(jié)合其他深度學(xué)習(xí)技術(shù)進(jìn)行人臉識別。

亞馬遜:aws.amazon.com/cn/rekognition/faqs/

谷歌:www.youtube.com/watch?v=OcycT1Jwsns&feature=youtu.be&t=2m41s

IBM:www.ibm.com/cloud/watson-visual-recognition

微軟:docs.microsoft.com/en-us/azure/cognitive-services/face/overview

這四種工具看起來都差不多,但是結(jié)果還有些許不同。首先我們從價(jià)格看起。

價(jià)格

亞馬遜、谷歌和微軟三家的價(jià)格模式類似,都是用量越多收費(fèi)越少。但是IBM不同,當(dāng)你的免費(fèi)額度用完后,每個(gè)API接口的價(jià)錢都是一樣的。四種工具中,微軟的免費(fèi)額度是最高的,每月可處理30000張圖片。

價(jià)格對比

現(xiàn)有以下三種情況:

A:小型創(chuàng)業(yè)公司每月處理1000張圖片

B:數(shù)字生產(chǎn)商每月處理10萬張圖片

C:數(shù)據(jù)中心每月處理1000萬張圖片

動(dòng)手試試

本文所用代碼可在我的GitHub中找到:github.com/dpacassi/face-detection

建立圖像數(shù)據(jù)集

要做人臉識別,首先就要建立數(shù)據(jù)集。本文所用到的圖像是從pexels網(wǎng)站上下載的,你可以直接到我的GitHub中下載。

編寫基礎(chǔ)測試框架

說是“框架”,實(shí)際上我的自定義代碼只有兩種類別。然而,這兩種類別很容易地就幫我分析了原始圖像數(shù)據(jù),在不同的任務(wù)上也只需要少量代碼。

FaceDetectionClient中記錄了圖片存儲的信息、四種工具的細(xì)節(jié)以及所有處理過的圖像。

比較四種SDK

以下是四種工具支持的語言:

inter-rater 可信度

在讓計(jì)算機(jī)進(jìn)行人臉識別之前,我先記錄下了自己所觀察到的圖片中人臉數(shù)量。同時(shí),我還找了三位同時(shí)對圖片進(jìn)行識別。

什么是人臉?

我在進(jìn)行手動(dòng)標(biāo)記時(shí),只要露出四分之一臉就算一個(gè)人臉,而我的同事們有的會(huì)把不明顯的也算作人臉,或者看到眼睛、鼻子就算一張臉。所以每個(gè)人的判斷標(biāo)準(zhǔn)不同。

對這張圖,我們四人有不同的結(jié)論,分別是10張、13張、16張和16張人臉。所以我打算取平均值,14。

比較結(jié)果

圖中可以看出,微軟智能達(dá)到17.55%的人臉檢測率,為什么成功率如此低?首先,圖片數(shù)據(jù)集中的確有一些故意刁難識別器的圖像,另外要知道,機(jī)器的能力比人類還差得遠(yuǎn),想提高人臉識別的效率,還有很大的進(jìn)步空間。

雖然亞馬遜的工具能檢測出最多的人臉,但是谷歌和微軟的處理時(shí)間明顯更快。

另外,在人臉相對較小的圖片中,同樣還是亞馬遜表現(xiàn)得更好:

在這張圖片中,亞馬遜檢測出了10個(gè)人臉,而谷歌為4,IBM和微軟都是0。

不同角度和不完整人臉

看了上面的例子,可能會(huì)覺得IBM不中用。IBM的作用在普通圖片上一般般,但是在難度更大的圖片上,IBM的能力就很大了。尤其是在不常見的角度進(jìn)行人臉識別或者殘缺人臉識別。例如下面三張圖片的人臉只有IBM識別了出來:

邊界框

沒錯(cuò),各家的邊界框也有差別。亞馬遜、IBM和微軟都會(huì)返回只含有人臉的邊界框。而谷歌不光會(huì)圈起來人臉,會(huì)連帶整個(gè)頭部一起選中。

谷歌

微軟

看出差別了嗎?

誤報(bào)率

雖然我的數(shù)據(jù)集很小(只有33張照片),但是有兩張圖沒有模型識別出人臉。

亞馬遜和谷歌都只識別出了上圖中紋身中的頭像,而微軟識別失敗。只有IBM正確識別到了前面吉他手的人臉。恭喜IBM!

這張照片,谷歌在同一區(qū)域檢測出了兩張人臉。莫非看到了人眼看不到的東西?(細(xì)思極恐)

結(jié)語

雖然每種工具都有自己的有缺點(diǎn),但總的來說,亞馬遜、谷歌和IBM還不錯(cuò),微軟就很一般了,它的分?jǐn)?shù)最低。

微軟竟然沒檢測出其中的人臉

在本系列的下一篇文章中,我們會(huì)對比OpenCV以及其他開源工具,請繼續(xù)關(guān)注!

聲明:本文內(nèi)容及配圖由入駐作者撰寫或者入駐合作網(wǎng)站授權(quán)轉(zhuǎn)載。文章觀點(diǎn)僅代表作者本人,不代表電子發(fā)燒友網(wǎng)立場。文章及其配圖僅供工程師學(xué)習(xí)之用,如有內(nèi)容侵權(quán)或者其他違規(guī)問題,請聯(lián)系本站處理。 舉報(bào)投訴

原文標(biāo)題:人臉識別哪家強(qiáng)?四種API對比

文章出處:【微信號:jqr_AI,微信公眾號:論智】歡迎添加關(guān)注!文章轉(zhuǎn)載請注明出處。

收藏 人收藏

    評論

    相關(guān)推薦

    人臉識別技術(shù)在安防領(lǐng)域潛力究竟如何?

    對物體進(jìn)行識別,如果是可疑的物體就主動(dòng)報(bào)警。人臉識別技術(shù)在安防領(lǐng)域已經(jīng)有了很大的應(yīng)用,未來將有更廣闊的應(yīng)用空間,因此對安防企業(yè)來說,人臉識別
    發(fā)表于 04-07 10:07 ?1598次閱讀

    谷歌為何揪住微軟不放?

    的寬限期時(shí),谷歌都沒有接納,執(zhí)意公布漏洞,谷歌堅(jiān)持的背后真的沒有私心?眾所周知,谷歌微軟之間的競爭一直不斷。雖然谷歌曾經(jīng)表示自己的對手不是
    發(fā)表于 01-14 10:22

    人臉識別技術(shù)推進(jìn)智慧交通的發(fā)展

    ……支付寶推出了刷臉登錄這個(gè)功能后,很多人才開始了解到人臉識別人臉識別技術(shù)是基于人臉部特征來進(jìn)行識別
    發(fā)表于 08-24 14:25

    智能電話音頻的未來究竟如何?

    智能電話音頻的未來究竟如何?
    發(fā)表于 06-04 07:30

    微軟限制出售人臉識別AI軟件,人工智能隱私需保護(hù)

    微軟谷歌亞馬遜等公司因向美國政府和當(dāng)?shù)鼐匠鍪?AI 軟件,尤其是人臉識別軟件而受到民間自由團(tuán)體及這些公司內(nèi)部雇員的抨擊。對于科技公司來
    發(fā)表于 07-16 08:35 ?404次閱讀

    MIT質(zhì)疑亞馬遜人臉識別錯(cuò)誤

    MIT的研究表明,亞馬遜與其它友商在人臉識別技術(shù)相比,誤識率較高,將黑皮膚女性識別成男性的概率高達(dá)31%。而亞馬遜方面回應(yīng)稱,他們所采用的是
    的頭像 發(fā)表于 02-05 08:44 ?2656次閱讀

    第三方機(jī)構(gòu)對亞馬遜微軟人臉識別程序進(jìn)行測試

    微軟兩個(gè)月前呼吁通過立法監(jiān)管人臉識別軟件,該公司現(xiàn)在又開始進(jìn)行游說,支持其所在的華盛頓州的首部相關(guān)法案。現(xiàn)在的問題在于,與之同在西雅圖的
    的頭像 發(fā)表于 02-12 16:28 ?2663次閱讀

    亞馬遜谷歌微軟寸土必爭的云技術(shù)市場

    當(dāng)亞馬遜谷歌微軟都表示要爭取所有可能的垂直市場客戶時(shí),云服務(wù)三巨頭在零售市場的競爭變得愈發(fā)有趣。
    的頭像 發(fā)表于 02-13 15:11 ?3654次閱讀

    亞馬遜后,微軟宣布暫停向警方出售面部識別技術(shù)

    據(jù)外媒報(bào)道,微軟日前加入IBM亞馬遜的行列,宣布在監(jiān)管政策到位之前不會(huì)向警方出售面部識別技術(shù)。 圖:微軟總裁布拉德史密斯
    的頭像 發(fā)表于 06-15 15:23 ?1877次閱讀

    亞馬遜宣布禁止美國警方使用自己的人臉識別技術(shù)

      有分析人士認(rèn)為,IBM公司此舉不僅是政治考量,實(shí)質(zhì)上也有商業(yè)考量。總體而言,IBM人臉識別市場領(lǐng)域的所占份額并不大。也就是說,在業(yè)務(wù)層面,人臉
    發(fā)表于 07-22 16:08 ?1127次閱讀

    面對亞馬遜等在云計(jì)算戰(zhàn)場的高歌猛進(jìn),IBM開始第四次重大轉(zhuǎn)型

    面對亞馬遜微軟谷歌等企業(yè)在云計(jì)算戰(zhàn)場的高歌猛進(jìn),109歲的藍(lán)色巨人IBM早就開始“焦慮”了。
    的頭像 發(fā)表于 10-10 14:10 ?1631次閱讀

    為什么要考慮人臉識別技術(shù)的安全性

    認(rèn)為是一項(xiàng)非常有爭議的技術(shù),尤其是在國外,IBM谷歌微軟等巨頭紛紛表示目前暫停人臉識別技術(shù)的開發(fā),直至相關(guān)規(guī)則的正式出臺。
    發(fā)表于 10-30 11:41 ?600次閱讀

    谷歌將在亞馬遜微軟的總部所在地?cái)U(kuò)大觸角

    據(jù)報(bào)道,谷歌將在西雅圖附近建設(shè)新的園區(qū),在亞馬遜微軟的總部所在地?cái)U(kuò)大觸角。
    的頭像 發(fā)表于 11-16 10:11 ?1217次閱讀

    人臉識別是如何工作人臉識別技術(shù)的利與弊

    人臉識別是一種生物識別技術(shù),通過對人臉圖像或視頻進(jìn)行分析和比對,識別出人臉的身份。下面是簡要的工作
    發(fā)表于 06-30 15:02 ?1346次閱讀

    全球云服務(wù)市場增長,亞馬遜AWS、微軟Azure及谷歌GCP差距拉大

    報(bào)告指出,目前全球的主要云服務(wù)商包括亞馬遜AWS(市場份額31%),其次是微軟Azure(25%)和谷歌(11%)。盡管亞馬遜在整體市場仍占優(yōu)勢,但隨著
    的頭像 發(fā)表于 05-06 11:34 ?564次閱讀