以“奔騰之父”著稱的英特爾(Intel)前高管維諾德·達姆(Vinod Dham)與一些年輕的芯片設計師合作,正在設計一種“真正的人工智能處理器”。
每個人都在嘗試設計人工智能處理器或電子芯片,它們充當電腦的大腦,能像人類大腦一樣工作。以“奔騰之父”著稱的英特爾(Intel)前高管維諾德·達姆(Vinod Dham)是最近一個著手設計人工智能芯片的人。他與一些年輕的芯片設計師合作,設計了RAP芯片(real AI processors),即“真正的人工智能處理器”。
在AlphaICs公司,該團隊正在開發一種協處理器芯片,可以實現基于智能代理的人工智能。這些RAP芯片有一天可能會被部署到計算設備和自動駕駛汽車上,以閃電般的速度做出決定,或者被大規模部署到數據中心。在自動駕駛汽車里,環境在不斷變化,行人等威脅無處不在。RAP芯片就是為這些條件而設計的,達姆表示:“有了我們的芯片,你可以隨時做決定”。
在某種程度上,這種芯片的出現很及時。多年來,英特爾和其他大型芯片制造商通過縮小芯片電路,能夠制造出更快、更小、更便宜、耗電更少的芯片。這代表了一種制造上的進步,制造專家可以將電路之間的寬度從14納米縮短到10納米,以此類推。但就連英特爾也坦言,經過50多年的不斷進步,摩爾定律正在放緩。該定律是1965年英特爾名譽主席戈登·摩爾(Gordon Moore)的一項預測,即芯片上的晶體管數量每年將增加一倍。通過每年向芯片工廠投資100多億美元,英特爾每隔幾年就能建立新的工廠,這樣就可以將半導體轉移到一個新的制造節點。目前只有格羅方德(GlobalFoundries)、臺積電(TSMC)和三星(Samsung)才能進行類似的投資。
但英特爾已將其10納米芯片的生產計劃推遲到2019年晚些時候。這給了競爭對手一個迎頭趕上的歷史性機遇,可以通過設計而不是制造業的進步來實現芯片競爭。也就是說,如果你不能制造出更小的芯片,那么也許你可以通過設計更高效或更成熟的芯片來贏得競爭。達姆與AlphaICs公司都采用了這一想法,因為在人工智能應用的時代,提出一個全新的架構是有意義的。
科技行業分析公司Linley Group的分析師林利·格文奈普(Linley Gennap)表示,隨著時間的推移,摩爾定律帶來的好處將越來越少,最終可能會慢慢停止。在這一點上,芯片設計將帶來性能的提高。關于人工智能最酷的一點是,現在沒有人知道正確答案是什么,人們正在嘗試很多不同的架構。這是一個非常有創造力的時期,最終會有人想出一個很好的解決方案,它的數量級將比我們今天所擁有的要高。
但格文奈普并不清楚Alpha ICs公司的具體方法,他更傾向押注于Alpha ICs的競爭對手,如Graphcore公司(該公司在2017年底籌集了5000萬美元),或Mythic公司(該公司在2018年初籌集了4000萬美元)。格文奈普認為,還有很多其他資金雄厚的公司也在討論和Alpha ICs一樣的方法,這涉及到尋找與英偉達推廣的圖形處理器(GPUs)不同的解決方案。
格文奈普表示,我們都認同圖形處理器對人工智能并沒有多大幫助,但卻是我們今天所擁有的,我們真正需要的是經過優化的芯片,能以一種更節能的方式運行人工智能。這些人所說的聽起來和其他人宣傳的一樣,Alpha ICs公司談論的是張量,這是英偉達正在做的;把智能代理放到芯片上,這是Graphcore和其他人正在做的。每個人都有相同的目標,問題是,誰將很快兌現承諾,誰能展示比英偉達優化的圖形處理器更好的性能功耗比。在這個領域還有很多公司,當然,達姆并不會被勝算不大的事情嚇倒。
AlphaICs公司已籌集了250萬美元的種子資金,以證明其芯片設計能比中央處理器(CPUs,如英特爾制造的)或圖形處理器(GPUs,如英偉達制造的)更好地處理人工智能。該公司總部位于加利福尼亞州米爾皮塔斯(Milpitas)市,現有25名工程師。該公司位于FalconX孵化器中,由Nagendra Nagaraja和Prashant Trivedi發起。Nagendra擁有18年芯片設計經驗,獲得了28項專利;Prashant是一位經驗豐富的芯片設計師和營銷人員,有17年的工作經驗。他們相對來說不為人所知,盡管達姆認為他們在創業初期做了大量的工作。Nagaraja在與Trivedi建立公司之前,自己做了一段時間的芯片設計。“我遇到Nagendra,并愛上了他的這個想法,”達姆說,“我們追求的是一種別人從未有過的思維方式,我們認為必須通過在現場可編程門陣列(FPGA)或可編程測試芯片上進行測試來證明它的有效性。”
相比之下,達姆的經歷則是典型的白手起家的硅谷移民故事,40多年來他一直是科技界的常客。他出生在印度的普納(Pune),1975年他來到美國學習工程學,當時口袋里只有8美元。后來他成為了一名芯片工程師,并幫助發明了英特爾的第一個閃存芯片,該芯片現在已經成為一個價值數十億美元的巨大產業。他繼續管理英特爾的微處理器項目,包括1993年推出的奔騰處理器芯片,鞏固了英特爾作為全球最大芯片制造商的地位。他處理了關于奔騰處理器故障的負面報道,后來加入到英特爾的競爭對手美國半導體公司NexGen和AMD。2000年,他將Silicon Spice公司以12億美元的價格賣給了Broadcom公司,并成為該公司的首席執行官。后來,他成了一名風險投資家,先后在風投公司NewPath Ventures、NEA-IndoUS Ventures任職。如今,他是Alpha ICs公司的總裁兼首席運營官。
“我們有制造新技術的新方法,并會首先應用到人工智能上,”達姆說。“我們投資的是真正的人工智能,而不是圖形處理器。”圖形處理器擅長分類,這要歸功于深度學習神經網絡軟件,在過去的五年里,它已經變得非常善于學習識別物體。但這些芯片并不像AlphaICs公司所設想的那樣擅長做智能代理或決策。達姆稱,事實上,當圖形處理器在識別中出錯時,結果可能是災難性的。“有些異常值無法預測,”他說。“我們需要一種比基于圖形處理器的深度學習更智能的技術,除了分類,它還能讓你做出決策。這是芯片上的一個自我學習代理,它可以做出決定。也是我們現在所做的。”相比之下,市面上有很多愚蠢的人工智能。你給人工智能電腦展示一把牙刷,它可能會得出結論——這是一個棒球棒。“如果你錯了,結果會很危險,而且產生浪費,”達姆說。“深度學習也是一個黑匣子。如果出了問題,你卻不知道問題出在哪兒。我們的芯片更容易調試。”
2013年,DeepMind公司的一個研究小組訓練他們的神經網絡去玩雅達利2600游戲,如Breakout,這樣他們就能比最優秀的人類玩家表現得更好。現在這些游戲作為人工智能的基準測試。DeepMind公司訓練了大約7天時間才變得熟練。2016年,英特爾使用16核的Xeon處理器,可以在24小時內完成。AlphaIC的芯片則可以在6小時內用64個智能代理完成這項任務。“這是很大的突破,”達姆說。“我們相信我們可以達到最優的性能功耗比。”在第一次嘗試中,AlphaICs公司將32個智能代理放在一個芯片上,接著在約225毫米的芯片上放置64個智能代理。這是一個相對較小的芯片,應該比傳統的計算芯片更節能。但它的思維方式不同。
AlphaICs芯片是計算張量的集合,它接收來自真實世界的反饋并對其做出反應。許多工作是并行進行的。達姆表示,這些芯片的延遲或交互之間的等待時間減少了10倍。“谷歌已經創建了一臺基于張量的計算機,我們已經更進一步,創造了一組張量來創建一個層次結構以支持一種新型計算,”達姆說。“這就是我們想法的起源。中央處理器有限制。圖形處理器為游戲而設計。這些都是在盲目地解決問題。在不斷變化的環境中,它們通常不會做出決定。”
AlphaICs公司并沒有籌集大量的資金,而是一直保持小規模,并小心翼翼地進行研發。它已經與微軟等公司合作,并且正在開發用于協處理器的大量軟件。達姆相信,AlphaICs的工作速度可以比競爭對手快很多倍,但這種芯片對工程師來說也相對容易編程。“我們看到的很多都是脆弱的人工智能,”達姆說。“你可以把我們叫作強大的人工智能。”達姆表示,該公司希望在2019年年中能在市場上占有一席之地。
當然,英偉達十多年來一直致力于開發其圖形處理器芯片的人工智能版本,而且其許多新的人工智能芯片都是完全設計用來處理人工智能的。英偉達還擁有CUDA編程語言,這使其在全球大部分人工智能軟件領域幾乎處于壟斷地位。
想成功還有一些壓力。達姆擔心會面臨另一個“人工智能寒冬”的風險,就像20世紀80年代和90年代那樣,當時人工智能的進展相對較小。隨著摩爾定律速度放緩,人工智能芯片設計師和軟件制造商必須取得成功。“圖形處理器結束了人工智能的寒冬,它們瘋狂地騰飛了,”達姆說。“我們想為真正的人工智能來一次大變革。這是20年來第一次有機會在芯片上做一些創造性的事情。”
-
處理器
+關注
關注
68文章
19165瀏覽量
229130 -
人工智能
+關注
關注
1791文章
46859瀏覽量
237579
原文標題:“奔騰”之父擬開創“真”AI芯片
文章出處:【微信號:AI_News,微信公眾號:人工智能快報】歡迎添加關注!文章轉載請注明出處。
發布評論請先 登錄
相關推薦
評論