壓電MEMS通過單片即可實現(xiàn)微執(zhí)行、能量收集、傳感和無線通信,是應用潛力巨大的熱點技術(shù)。壓電MEMS微執(zhí)行器能夠精確、自主地執(zhí)行復雜動作如直線、旋轉(zhuǎn)、加速度、鉗動等,以此完成對極微小器件與結(jié)構(gòu)的納米尺度精確操作。因此,壓電MEMS微執(zhí)行器不但能夠滿足集成微系統(tǒng)(IMS)對自測試性、微定位性和片上操控性的嚴苛要求,同時能夠滿足集成微系統(tǒng)對輸出力矩/體積效能比、響應速度、分辨率、功耗、集成度方面的需求。
2015年開始,以集成微系統(tǒng)任務需求為牽引,通過問題定位、技術(shù)分解,確立了基于PZT材料的MEMS微執(zhí)行器研究,目前取得的研究進展包括以下幾個方面:壓電 MEMS 多自由度微振動臺技術(shù)、MEMS慣性傳感器自標定技術(shù)、MEMS壓電微馬達技術(shù)與PZT材料與微執(zhí)行器長期穩(wěn)定性研究。
1 壓電MEMS多自由度微振動臺技術(shù)
壓電MEMS微執(zhí)行器的設(shè)計難點包括了大位移與低驅(qū)動電壓之間的制約、驅(qū)動負載功率與執(zhí)行器薄型化之間的制約、不可避免的工藝誤差帶來的性能退化。針對上述性能提升難點,在不斷的摸索過程中形成和發(fā)展了位移放大機構(gòu)設(shè)計、疊加模態(tài)去耦設(shè)計、負載帶寬優(yōu)化等相關(guān)技術(shù)。同時,根據(jù)多輪次的流片與設(shè)計、版圖相互調(diào)整的摸索經(jīng)驗,完成壓電多自由度微振動臺數(shù)學模型研究,建立工藝參數(shù)與器件性能的映射關(guān)系,同時結(jié)合器件設(shè)計優(yōu)化,實現(xiàn)器件設(shè)計與工藝制備的協(xié)同優(yōu)化,獲得壓電微執(zhí)行器穩(wěn)定工藝流程與優(yōu)異器件性能。
如圖1所示,制得的多自由度微振動臺芯片,在位移/電壓、執(zhí)行器厚度方面處于國際領(lǐng)先水平。而微執(zhí)行器薄型化、低電壓、位移等指標的進步對于后續(xù)集成和應用具備重要意義。指標對比見表1。
圖1 (a)不同結(jié)構(gòu)微振動臺與(b)動態(tài)測試結(jié)果
表1 微振動臺性能參數(shù)及對比
2 MEMS慣性傳感器自標定技術(shù)
MEMS慣性傳感器自標定技術(shù)主要通過在MEMS慣性傳感器外部集成壓電微振動臺和集成陣列化檢測結(jié)構(gòu)實現(xiàn)閉環(huán)控制能力,可以提供多軸高精度動態(tài)運動特征,從而實現(xiàn)MEMS慣性傳感器使用前原位無自損標定。通過對MEMS慣性傳感器零位與標度因子的漂移、非敏感軸互耦誤差、陀螺儀加速度靈敏度等參數(shù)獲取,在使用前對長期漂移的誤差進行主動補償,能夠從根本上降低對傳感器長期穩(wěn)定性的要求,大幅度降低其成本,極大地拓展MEMS慣性傳感器應用領(lǐng)域。同時,這種原位自標定技術(shù)具備通用性,能夠?qū)崿F(xiàn)對不同類型與結(jié)構(gòu)的MEMS慣性傳感器包括加速度計、陀螺儀以及IMU的無損原位自標定。
基于多自由度微振動臺的進展,目前已完成MEMS加速度計和陀螺儀的自標定流程驗證。并采用光學閾值檢測方法,解決陣列化高精度貼片工藝技術(shù)與微弱電流檢測電路設(shè)計制備問題,可實現(xiàn)多自由度微振動臺陣列化高精度檢測,下一步期望實現(xiàn)10 nm的振動位移精度檢測。光學檢測樣片與檢測量隨位移的變化如圖2所示。
圖2 光學閾值檢測(a)陣列化結(jié)構(gòu)樣片與(b)檢測量隨位移的變化
圖3 自標定模塊三維集成方案(a)剖面圖與(b)三維圖
圖3是目前設(shè)計的自標定模塊三維集成方案,能實現(xiàn)微振動臺、檢測結(jié)構(gòu)、被標定MEMS傳感器之間的機械結(jié)構(gòu)疊層與互聯(lián),體積小于1立方厘米。圖4為已完成的加速度計與微振動臺的集成樣品及測試情況,解決了機械敏感結(jié)構(gòu)集成應力問題, 有望達到小于100 x 10^6的自標定精度,徹底解決多種MEMS慣性傳感器長期穩(wěn)定性問題。
圖4 加速度計與微振動臺集成(a)初步集成樣片、 (b)封裝樣品與(c)測試結(jié)果
3 MEMS壓電微馬達技術(shù)
如圖5所示,壓電MEMS微執(zhí)行器在薄型化、低電壓方面的進展提供了新的馬達發(fā)展思路,能夠在極扁平化集成空間中圓片級集成微執(zhí)行器(電機)、轉(zhuǎn)子、狀態(tài)檢測結(jié)構(gòu),有望徹底解決傳統(tǒng)超聲馬達固有的體積大、裝配一致性差、無法與其他結(jié)構(gòu)高密度集成等問題。
圖5 微馬達執(zhí)行器顯微結(jié)構(gòu)
目前,國際上現(xiàn)有的研究表明平面可集成微馬達執(zhí)行器尚存在驅(qū)動效率(Q值)低、負載驅(qū)動能力(位移或輸出力矩)不足等問題。針對上述問題,采用新穎的設(shè)計思路,創(chuàng)新提出儲能支撐結(jié)構(gòu)設(shè)計、異形電極結(jié)構(gòu)等新型設(shè)計。從圖6所示微馬達執(zhí)行器樣片的測試結(jié)果可以看出,設(shè)計方法切實有效,微馬達執(zhí)行器不但在位移/電壓、Q值兩項指標上國際領(lǐng)先,而且線性度與穩(wěn)定性優(yōu)異,能夠?qū)崿F(xiàn)對負載的步進旋轉(zhuǎn)驅(qū)動,在輸出力矩、行波驅(qū)動效率、集成電壓等方面潛力極大。具體參數(shù)對比見表2。
同時,提出集成化旋轉(zhuǎn)步進檢測方案,有望進一步解決極扁平化集成需求、高定位精度需求,實現(xiàn)檢測結(jié)構(gòu)與微馬達微執(zhí)行器、轉(zhuǎn)子的共形集成,期望達到±0.2°的旋轉(zhuǎn)檢測精度。
圖6 微馬達執(zhí)行器
表2 微馬達執(zhí)行器性能參數(shù)及對比
4 PZT材料與微執(zhí)行器長期穩(wěn)定性研究
長期穩(wěn)定性是微執(zhí)行器的重要運行指標,基于PZT材料的MEMS微執(zhí)行器的長期穩(wěn)定在國內(nèi)尚未有相關(guān)文獻報道。影響微執(zhí)行器長期穩(wěn)定的最主要因素在于設(shè)計和PZT材料特性, 如何有效的利用PZT材料特性,通過設(shè)計方法優(yōu)化,提高微執(zhí)行器長期穩(wěn)定性需要在多輪次流片迭代過程中不斷分析總結(jié)。通過界面調(diào)控、組分摻雜、制備優(yōu)化、極化方式優(yōu)化等一系列配合材料性能參數(shù)的設(shè)計方法改進,獲得了壓電材料兩個方面性能的優(yōu)化:首先是溫度穩(wěn)定性提升,降低了對工藝溫度的限制,實現(xiàn)了器件性能穩(wěn)定度的提升;另外,通過調(diào)控鐵電回線,獲得了微執(zhí)行器執(zhí)行能力的提升。結(jié)果如圖7所示。
圖7 (a)材料溫度穩(wěn)定性測量與(b)鐵電回線調(diào)控
現(xiàn)階段微執(zhí)行器疲勞測試結(jié)果如圖8所示,能夠獲得振動次數(shù)高于10^7的穩(wěn)定工作狀態(tài)。目前正在進行多材料體系界面機理研究,探索影響執(zhí)行器疲勞性能的因素,為進一步提高微執(zhí)行長期穩(wěn)定性提升奠定基礎(chǔ)。
圖8 微執(zhí)行器疲勞測試結(jié)果
科學意義
本工作以壓電MEMS微執(zhí)行器設(shè)計為基礎(chǔ),以全集成MEMS工藝為手段,制備出性能優(yōu)異的MEMS微執(zhí)行器,掃除了MEMS微執(zhí)行器可能帶來的驅(qū)動能量耗散、效率不足、力矩不夠等缺點,填補了集成微系統(tǒng)的執(zhí)行器解決方案空白。在國內(nèi)打破了PZT材料與MEMS技術(shù)融合的設(shè)計與工藝瓶頸,發(fā)展出包括“MEMS微執(zhí)行器設(shè)計與制備、集成化閉環(huán)檢測控制、多結(jié)構(gòu)集成”的壓電MEMS執(zhí)行器模塊能力,率先推進壓電MEMS器件設(shè)計、制備、測試標準化、批量化技術(shù),為其應用奠定基礎(chǔ)。
展望
在進一步提高MEMS微執(zhí)行器性能的基礎(chǔ)上,深入研究集成化閉環(huán)檢測控制技術(shù)、多結(jié)構(gòu)集成技術(shù),實現(xiàn)慣性傳感器原位自標定模塊與壓電微馬達模塊。一方面,慣性傳感器原位自標定模塊將會帶來MEMS慣性傳感器領(lǐng)域的變革,打破傳統(tǒng)的自標定模式與高成本傳感器芯片優(yōu)化模式,不僅是傳統(tǒng)高精度高穩(wěn)定性高成本MEMS慣性傳感器的替代品,而且發(fā)展出一系列新型應用和變革,包括提供慣導系統(tǒng)的新設(shè)計自由度、導航定位、運動載體控制等系統(tǒng)架構(gòu)變革,能夠降低慣性傳感器乃至慣導系統(tǒng)的維護成本,延長維護周期。另一方面,壓電微馬達技術(shù)由于具備低電壓低功耗、高集成度、高精度等優(yōu)點,將廣泛應用于微動作控制部件、微機械裝配維修、納米定位等方面。
-
mems
+關(guān)注
關(guān)注
129文章
3899瀏覽量
190360 -
執(zhí)行器
+關(guān)注
關(guān)注
5文章
375瀏覽量
19323
原文標題:壓電MEMS微執(zhí)行器技術(shù)研究進展
文章出處:【微信號:MEMSensor,微信公眾號:MEMS】歡迎添加關(guān)注!文章轉(zhuǎn)載請注明出處。
發(fā)布評論請先 登錄
相關(guān)推薦
評論