摘要:
為了確保第五代移動通信(5G)技術(shù)的可靠性、穩(wěn)定性、高傳輸速率的優(yōu)勢,基于具有線性編碼復(fù)雜度的迭代編碼算法,提出了混合校驗矩陣構(gòu)造算法。該算法首先對傳統(tǒng)迭代編碼算法進行改進,使其適用于多元低密度奇偶校驗(NB-LDPC)碼;然后采用后向迭代法改變編碼方案和校驗矩陣構(gòu)造方式使?jié)u進邊增長(PEG)算法具有下三角結(jié)構(gòu),并將其作為基矩陣;最后采用改進后具有下三角結(jié)構(gòu)的QC-LDPC算法生成循環(huán)移位矩陣和有限域系數(shù)矩陣,同時消除短環(huán)影響,從中選取最優(yōu)的校驗矩陣。仿真結(jié)果表明,混合構(gòu)造算法所構(gòu)造的多元LDPC碼不僅具有線性的編碼和存儲復(fù)雜度,且有較強的糾錯能力。
?
0 引言
隨著移動互聯(lián)網(wǎng)和物聯(lián)網(wǎng)的不斷發(fā)展,第五代移動通信(Fifth-Generation Mobile Communication Technology,5G)面臨移動通信爆發(fā)式增長[1-2]。5G技術(shù)不僅需要大幅度提升頻譜利用效率,而且需要具備支持海量設(shè)備連接的能力[3-6]。由于低密度奇偶校驗(Low Density Parity Check,LDPC)碼具有高可靠性、快速收斂性及較強抗突發(fā)錯誤能力[7-8],可以提高系統(tǒng)有效性[9-10],使得3GPP RAN1會議在2016年確定在5G移動通信中使用LDPC碼作為移動帶寬eMBB業(yè)務(wù)數(shù)據(jù)的長碼塊編碼方案。
本文對2004年由王鵬提出的LDPC碼迭代編碼算法[11]進行改進,轉(zhuǎn)變?yōu)檫m用于多元LDPC碼的編碼算法,稱為多元迭代編碼算法;2005年,Hu Xiaoyu提出了漸進邊增長(Progressive Edge Growth,PEG)構(gòu)造算法[12],該算法譯碼性能好,但編碼復(fù)雜度較高。本文針對PEG算法具有高編碼復(fù)雜度這一缺點,提出改進的PEG算法,即irPEG算法;結(jié)構(gòu)化構(gòu)造算法,即QC-LDPC構(gòu)造算法[13],該算法復(fù)雜,譯碼性能差于隨機構(gòu)造算法,但復(fù)雜度大幅度下降,硬件實現(xiàn)性強。本文提出一種改進的QC-LDPC算法,使校驗矩陣具有下三角結(jié)構(gòu),降低復(fù)雜度,加快收斂速度,構(gòu)造出無短環(huán)的校驗矩陣。然后,從編碼復(fù)雜度和糾錯性能兩方面考慮,基于多元迭代編碼算法,提出混合構(gòu)造算法,即HC構(gòu)造算法,將隨機構(gòu)造和結(jié)構(gòu)化構(gòu)造算法結(jié)合,irPEG算法構(gòu)造基矩陣,改進的QC-LDPC算法生成循環(huán)移位矩陣和有限域系數(shù)矩陣,消除短環(huán)影響,設(shè)置校驗矩陣個數(shù),從中選取最優(yōu)校驗矩陣。該算法既具有隨機構(gòu)造的隨機性,又保持結(jié)構(gòu)化構(gòu)造的低復(fù)雜度,降低結(jié)構(gòu)化構(gòu)造對誤碼性能帶來的損失,是比較折中的算法。
1 多元迭代編碼算法
在圖1中對角線上的元素全部為GF(q)域上的非“0”元素,并且剩余的非“0”元素全部對應(yīng)于對角線左邊。若構(gòu)造出的多元LDPC校驗矩陣具有圖1的結(jié)構(gòu),則在編碼過程中可直接采用迭代編碼算法編碼。
其中,l∈[0,n-k-1],hi,j表示校驗矩陣H中第i行j列上的元素,且k=n-m。由式(1)知,多元迭代編碼算法過程為利用校驗矩陣H中各行約束關(guān)系,采用后項迭代算法,逐次計算每個校驗位符號值。
對迭代編碼算法改進,將二元迭代編碼時采用的與(AND)和異或(XOR)運算,改進為GF(q)域上乘法和加法運算。同時多元迭代編碼算法的運算過程中引入了GF(q)域上除法運算。對運算量簡化,將對角線上元素設(shè)置為1,式(1)改為式(2)。
2 混合構(gòu)造算法
2.1 irPEG構(gòu)造算法
針對PEG算法具有較高編碼復(fù)雜度的缺點,提出一種具有下三角結(jié)構(gòu)非規(guī)則的PEG算法,即irPEG算法。該算法從編碼方案、構(gòu)造校驗矩陣方面改進,以降低編碼復(fù)雜度,提升糾錯性能。具體步驟如下:
(1)確定基矩陣中各參數(shù)
行列數(shù)、變量節(jié)點度分布序列,并且初始化基矩陣的信息,包括與變量節(jié)點相互連接的校驗節(jié)點的集合以及它的補集。
(2)構(gòu)造基矩陣對角線右側(cè)下三角部分
首先采用后項迭代算法從最后一列變量節(jié)點構(gòu)造,根據(jù)變量節(jié)點度分布[14]向前連接校驗節(jié)點。每列中第一個非“0”元素位置必須與對角線上校驗節(jié)點連接,其余非“0”元素需添加在對角線左側(cè)。尋找所有與該變量節(jié)點連接的校驗節(jié)點集合,從中篩選度數(shù)最小的校驗節(jié)點集合。若該集合含有多元素,則從中刪除構(gòu)成短環(huán)的校驗節(jié)點,隨機連接剩余某校驗節(jié)點,若只有一個元素,則直接連接該校驗節(jié)點。
(3)構(gòu)造基矩陣的前n-m列
從第n-m個變量節(jié)點依次向前構(gòu)造。根據(jù)初始化變量節(jié)點度分布序列選擇度數(shù)最小的校驗節(jié)點,保證每行行重相比于平均行重相差不大。刪除構(gòu)成短環(huán)的校驗節(jié)點后,從剩余校驗節(jié)點中隨機連接。
由于構(gòu)造出的矩陣具有下三角結(jié)構(gòu),構(gòu)造時在滿足式(4)度分布的基礎(chǔ)上,將矩陣最后一列列重設(shè)置為1,校驗部分對角線上元素均為1,下三角部分均為0元素。由此可見,可以利用式(2)直接采用后多元迭代編碼算法進行編碼。
2.2 混合構(gòu)造算法
雖然irPEG算法結(jié)合多元迭代編碼算法可大大降低編碼復(fù)雜度,但更適用于中短碼硬件實現(xiàn),對于長碼來說,硬件實現(xiàn)復(fù)雜度依然較高。此時犧牲多元LDPC碼一定糾錯性能,在改進的QC-LDPC算法的基礎(chǔ)上使其具有下三角結(jié)構(gòu),同時采用irPEG算法構(gòu)造基矩陣WJ×L,提高多元LDPC碼隨機性,降低結(jié)構(gòu)化構(gòu)造對糾錯性能帶來的損失。將改進的QC-LDPC構(gòu)造算法與irPEG算法結(jié)合,稱為混合構(gòu)造算法,即HC構(gòu)造算法。HC構(gòu)造算法步驟如下:
(1)irPEG算法構(gòu)造基矩陣WJ×L。
給定多元LDPC碼度分布,根據(jù)irPEG算法構(gòu)造出具有下三角結(jié)構(gòu)二元基矩陣,大小為J×L。
(2)確定有限域元素系數(shù)矩陣GcJ×L,根據(jù)基矩陣非“0”元素位置,在(0,q-1)間隨機選擇gcj,l值。
(3)基矩陣WJ×L確定循環(huán)移位系數(shù)矩陣SJ×L。
將循環(huán)移位系數(shù)矩陣SJ×L對角線上系數(shù)設(shè)為0,隨機選擇移位系數(shù)sj,l,通過WJ×L結(jié)合避免長度為2i的充分必要條件,如式(5)所示,確定移位系數(shù)矩陣SJ×L中移位系數(shù)sj,l。
其中,0表示p×p維的零矩陣,P表示p×p維的單位陣,碼長為n=p×L,碼率為r=(1-J/L)。HC構(gòu)造算法的流程圖如圖2所示。
3 編碼復(fù)雜度分析
PEG算法、irPEG算法、HC算法的編碼復(fù)雜度如表1所示。其中,w是生成矩陣的平均列重,n是碼長,k是信息位長。
在存儲復(fù)雜度方面,HC算法構(gòu)造的LDPC碼存儲矩陣時存儲一個p×p維目標方陣P、一個J×L維多元系數(shù)矩陣GcJ×L及一個J×L循環(huán)移位系數(shù)矩陣SJ×L。irPEG算法構(gòu)造同樣大小校驗矩陣,存儲一個p×J×p×L大小的校驗矩陣。可見,HC算法與irPEG算法相比具有更簡單的矩陣存儲結(jié)構(gòu)。
在編碼復(fù)雜度方面,PEG算法采用高斯消去編碼算法,irPEG算法和HC算法采用多元迭代編碼算法。高斯消去編碼復(fù)雜度包含預(yù)處理,運算復(fù)雜度為o(n3),編碼復(fù)雜度為o(n2),整個編碼過程需wn次乘法,(w-1)n次加法。多元迭代編碼算法整個編碼過程用到(w-1)(n-k)次加法,w(n-k)次乘法。
irPEG算法和HC算法能直接構(gòu)造出下三角校驗矩陣,避免了校驗矩陣預(yù)處理的同時保證了校驗矩陣的稀疏性。因此,w相對于n可以看成非常小的常數(shù),實現(xiàn)多元LDPC碼的線性復(fù)雜度編碼,與傳統(tǒng)的構(gòu)造算法相比,大幅度地降低了編碼的復(fù)雜度。
4 仿真結(jié)果及分析
仿真參數(shù)設(shè)置:度分布服從式(4)的多元LDPC碼,矩陣通過PEG算法和irPEG算法生成,在十六進制1/2碼率(Code1)和3/4碼率(Code2)下進行仿真,Code1時,信息位長為512 bit;Code2時,信息位長為176 bit。譯碼采用Mixed Log-FFT-BP譯碼算法[15],迭代次數(shù)25,BPSK調(diào)制,AWGN信道。
圖3和圖4分別為Code1和Code2時不同碼率下的糾錯性能。由圖3和圖4可知,irPEG算法與PEG算法誤碼率相比,性能相差不大,表明irPEG算法構(gòu)造具有下三角結(jié)構(gòu)的多元LDPC碼在大幅度降低硬件實現(xiàn)復(fù)雜度的同時,具有較強的糾錯能力。
對Code1和Code2譯碼時間進行測量,保持仿真環(huán)境一致性,如表2和表3所示。由表2可知,irPEG算法時間明顯比PEG算法少,當誤比特數(shù)較少時,時間節(jié)省量少于50%,隨著誤比特數(shù)增加,時間節(jié)省量穩(wěn)定在50%,因此,irPEG算法耗費時間僅為PEG算法50%。Code2在信噪比為4 dB時的仿真測試結(jié)果如表3所示,同樣表明譯碼所需時間減少一半。
參數(shù)設(shè)置如下:碼率1/2、2/3、3/4、4/5、6/7,矩陣通過PEG和HC生成,十六進制(Code3)下仿真,1/2碼率時,基矩陣16列,目標矩陣P為24×24單位陣;2/3碼率時,基矩陣18列,P為16×16單位陣;3/4碼率時,基矩陣16列,P為16×16單位陣;4/5碼率時,基矩陣20列,P為12×12單位陣;6/7碼率時,基矩陣14列,P為16×16單位陣,固定信息位長768 bit。圖5為Code3情況時,PEG算法與HC算法在不同碼率下的誤比特率性能。
由圖5可知,HC算法與PEG算法構(gòu)造的多元LDPC碼在低信噪比時沒有明顯差別;在高信噪比下HC算法性能略差于PEG算法構(gòu)造的多元LDPC碼,因此兩種算法具有一致的編碼增益。
5 結(jié)論
本文提出基于多元LDPC碼迭代編碼算法的混合校驗矩陣構(gòu)造算法,首先對迭代編碼算法改進,使其適用于多元LDPC碼;然后采用后項迭代法使PEG算法具有下三角結(jié)構(gòu),并將其作為混合構(gòu)造算法基矩陣;最后采用改進后具有下三角的QC-LDPC碼算法生成循環(huán)移位矩陣和有限域系數(shù)矩陣,設(shè)置校驗矩陣的個數(shù),從中選取最優(yōu)的校驗矩陣,該校驗矩陣消除了短環(huán)影響,形成混合構(gòu)造算法。仿真結(jié)果表明,本文提出的算法可以更好地適用于5G移動通信系統(tǒng)且滿足譯碼算法的需求,對于高速通信設(shè)備來說是一種很好的候選校驗矩陣構(gòu)造算法。
-
LDPC
+關(guān)注
關(guān)注
1文章
66瀏覽量
31167 -
算法
+關(guān)注
關(guān)注
23文章
4599瀏覽量
92641 -
移動通信
+關(guān)注
關(guān)注
10文章
2600瀏覽量
69791
原文標題:【學(xué)術(shù)論文】基于迭代編碼算法的混合構(gòu)造算法
文章出處:【微信號:ChinaAET,微信公眾號:電子技術(shù)應(yīng)用ChinaAET】歡迎添加關(guān)注!文章轉(zhuǎn)載請注明出處。
發(fā)布評論請先 登錄
相關(guān)推薦
評論