精品国产人成在线_亚洲高清无码在线观看_国产在线视频国产永久2021_国产AV综合第一页一个的一区免费影院黑人_最近中文字幕MV高清在线视频

0
  • 聊天消息
  • 系統(tǒng)消息
  • 評(píng)論與回復(fù)
登錄后你可以
  • 下載海量資料
  • 學(xué)習(xí)在線課程
  • 觀看技術(shù)視頻
  • 寫文章/發(fā)帖/加入社區(qū)
會(huì)員中心
創(chuàng)作中心

完善資料讓更多小伙伴認(rèn)識(shí)你,還能領(lǐng)取20積分哦,立即完善>

3天內(nèi)不再提示

機(jī)器學(xué)習(xí)沒有捷徑可循

電子工程師 ? 來源:工程師曾玲 ? 2019-05-02 15:01 ? 次閱讀

O'Reilly最新的調(diào)查數(shù)據(jù)顯示,大數(shù)據(jù)仍然只是1%,或者15%的企業(yè)游戲。大多數(shù)的企業(yè)(85%)依然沒有破解AI機(jī)器學(xué)習(xí)的密碼。僅僅只有15%的“見多識(shí)廣”的企業(yè)在生產(chǎn)過程中運(yùn)行一些數(shù)據(jù)模型超過了5年。更重要的是,這些企業(yè)更傾向于在一些重要的領(lǐng)域花費(fèi)時(shí)間和精力,比如模型偏差和數(shù)據(jù)隱私。相對(duì)而言,那些還屬于初學(xué)者之列的企業(yè)仍然還在努力嘗試著尋找啟動(dòng)按鈕。

不幸的是,對(duì)于那些希望通過自動(dòng)快捷方式比如Google的AutoML或者通過聘請(qǐng)咨詢公司縮小數(shù)據(jù)科學(xué)差距的企業(yè),我們給出的答案是:實(shí)現(xiàn)數(shù)據(jù)科學(xué)的確需要花費(fèi)時(shí)間,而且沒有捷徑可循。

聰明的企業(yè)專注于深層次數(shù)據(jù)

首先,值得注意的是,O'Reilly的調(diào)查數(shù)據(jù)來自于其自選的一群人:那些曾經(jīng)參加過O'Reilly活動(dòng)的,或者參加過該公司在線研討會(huì)或通過其他途徑與之有接觸的人。這些人群對(duì)于數(shù)據(jù)科學(xué)都有前瞻性的興趣,即使(按照調(diào)查數(shù)據(jù)的顯示)他們中的大部分人并沒有從事太多的相關(guān)工作。對(duì)于那些沉浸在大數(shù)據(jù)體驗(yàn)中的人來說,最好的客戶群體就是那些被稱為“見多識(shí)廣”的企業(yè),它們?cè)谏a(chǎn)過程中使用的數(shù)據(jù)模型已經(jīng)運(yùn)行了5年以上。

從調(diào)查上可以發(fā)現(xiàn)一個(gè)有趣的現(xiàn)象,那就是這些企業(yè)是怎樣稱呼他們自己的數(shù)據(jù)專家的。具有豐富數(shù)據(jù)經(jīng)驗(yàn)的企業(yè)稱之為數(shù)據(jù)科學(xué)家。而那些思維尚停留在上世紀(jì)90年代“數(shù)據(jù)挖掘”模式的企業(yè)則更傾向于稱其為“數(shù)據(jù)分析師”。如下圖所示。

機(jī)器學(xué)習(xí)沒有捷徑可循

調(diào)查發(fā)現(xiàn),無論企業(yè)選擇如何稱呼他們的數(shù)據(jù)專家,企業(yè)在AI和機(jī)器學(xué)習(xí)方面的經(jīng)驗(yàn)越豐富,他們就越有可能依靠?jī)?nèi)部數(shù)據(jù)科學(xué)團(tuán)隊(duì)建立模型,如下圖所示。

機(jī)器學(xué)習(xí)沒有捷徑可循

幾乎沒人關(guān)注云機(jī)器學(xué)習(xí)服務(wù)(至少現(xiàn)在還沒有)。那些只有2年以下生產(chǎn)經(jīng)驗(yàn)的企業(yè)傾向于依賴外部的顧問來搭建機(jī)器學(xué)習(xí)模型。對(duì)于這樣的企業(yè)而言,這種感覺就像一種不用投入人力而享受數(shù)據(jù)科學(xué)收益的機(jī)會(huì),但這是一個(gè)非常愚蠢的方法。

企業(yè)的數(shù)據(jù)越復(fù)雜,其數(shù)據(jù)科學(xué)團(tuán)隊(duì)就越能建立模型,并評(píng)估項(xiàng)目成功的關(guān)鍵指標(biāo)。縱觀所有的企業(yè),產(chǎn)品經(jīng)理對(duì)于項(xiàng)目成功的作用是36%,管理團(tuán)隊(duì)的數(shù)據(jù)是29%,數(shù)據(jù)科學(xué)團(tuán)隊(duì)的貢獻(xiàn)是21%。

對(duì)于那些經(jīng)驗(yàn)豐富的企業(yè)來說,產(chǎn)品經(jīng)理的作用依然占到34%,數(shù)據(jù)科學(xué)團(tuán)隊(duì)27%,幾乎與管理團(tuán)隊(duì)(28%)相同。

對(duì)那些缺乏經(jīng)驗(yàn)的企業(yè)而言,管理團(tuán)隊(duì)占到31%,數(shù)據(jù)科學(xué)團(tuán)隊(duì)占比較少(16%)。這不是個(gè)問題,事實(shí)是這些數(shù)據(jù)科學(xué)團(tuán)隊(duì)最適合計(jì)算出如何使用數(shù)據(jù)并衡量其成功。

太多時(shí)候,是外行指導(dǎo)外行

這種依賴管理層來推動(dòng)數(shù)據(jù)科學(xué)的想法引起了人們的注意。調(diào)查顯示,不少高管自稱是數(shù)據(jù)驅(qū)動(dòng)的,但卻無視了數(shù)據(jù)其實(shí)并不支持那些靠直覺驅(qū)使的決策(62%的人承認(rèn)這么做)。

那些缺乏大數(shù)據(jù)悟性的企業(yè)似乎愿意口頭提供數(shù)據(jù),但他們根本不明白有效數(shù)據(jù)科學(xué)的細(xì)微差別。他們?nèi)狈Ρ貍涞慕?jīng)驗(yàn)來確保可以獲得有意義的、無偏見的數(shù)據(jù)洞察力。

關(guān)于如何理解機(jī)器學(xué)習(xí)模型,以及如何相信該模型所導(dǎo)致的結(jié)果,更多有成熟經(jīng)驗(yàn)的企業(yè)顯然掌握了Gartner博客網(wǎng)絡(luò)中的一位博主Andrew White的評(píng)估方法:

AI的創(chuàng)新之處就在于AI可以重新定義新的基線,換句話說就是那些我們認(rèn)為太過復(fù)雜的東西和非常規(guī)的東西,目前都可以利用AI來實(shí)現(xiàn)。和之前的技術(shù)相比,AI應(yīng)該可以處理更加復(fù)雜而且具有認(rèn)知能力的工作。

這個(gè)新的現(xiàn)實(shí)只有在AI自動(dòng)處理的結(jié)果是合理的時(shí)候才有意義。如果這個(gè)新奇的工具所得出的決策和結(jié)果讓人類無法理解,那人們就會(huì)放棄這個(gè)工具。因此在某種程度上,能否理解AI所做出的決策也非常重要。

然而,理解決策和理解算法如何工作是兩回事。人是可以掌握輸入、選擇、權(quán)重以及結(jié)果的原理的,而即便算法能夠在一定程度上將所有這些結(jié)合到一起,但我們依然無法證明這一進(jìn)程。如果結(jié)果和輸入之間的差距太大,那么人對(duì)算法的信任就很有可能會(huì)喪失——這是人的天性。

想要達(dá)到這種理解水平是無法通過花錢雇傭咨詢顧問能實(shí)現(xiàn)的。云端也不是現(xiàn)成的。運(yùn)用工具比如Google的AutoML可以“使得那些具有有限機(jī)器學(xué)習(xí)專長(zhǎng)經(jīng)驗(yàn)的開發(fā)者能訓(xùn)練針對(duì)其業(yè)務(wù)需求的高質(zhì)量模型。”這聽起來非常好,但是想要從數(shù)據(jù)科學(xué)中受益需要有數(shù)據(jù)科學(xué)的經(jīng)驗(yàn)。這不僅僅是調(diào)整模型的問題,更需要知道如何實(shí)現(xiàn),這需要大量的試錯(cuò)經(jīng)驗(yàn)。

另外,從事數(shù)據(jù)科學(xué)需要有人文的心態(tài),再次強(qiáng)調(diào),需要經(jīng)驗(yàn)。沒有捷徑可循。實(shí)際上,這意味著那些早期投資于數(shù)據(jù)科學(xué)的企業(yè)應(yīng)該發(fā)現(xiàn)自己領(lǐng)先于那些沒有競(jìng)爭(zhēng)優(yōu)勢(shì)的同行——這種差異很可能會(huì)持續(xù)下去。

對(duì)于那些希望迎頭趕上的企業(yè),Gartner分析師Svetlana Sicular最為經(jīng)典的忠告仍然在耳邊回響:“企業(yè)應(yīng)該在內(nèi)部多看看。其實(shí)內(nèi)部已經(jīng)有人比那些神秘的數(shù)據(jù)科學(xué)家更了解自己的數(shù)據(jù)。”只要企業(yè)明白要在企業(yè)完成好的數(shù)據(jù)科學(xué)需要花費(fèi)時(shí)間,并且給予其人員學(xué)習(xí)和成長(zhǎng)的空間,他們就不再需要尋找捷徑。

聲明:本文內(nèi)容及配圖由入駐作者撰寫或者入駐合作網(wǎng)站授權(quán)轉(zhuǎn)載。文章觀點(diǎn)僅代表作者本人,不代表電子發(fā)燒友網(wǎng)立場(chǎng)。文章及其配圖僅供工程師學(xué)習(xí)之用,如有內(nèi)容侵權(quán)或者其他違規(guī)問題,請(qǐng)聯(lián)系本站處理。 舉報(bào)投訴
  • 人工智能
    +關(guān)注

    關(guān)注

    1791

    文章

    46863

    瀏覽量

    237587
  • 機(jī)器學(xué)習(xí)

    關(guān)注

    66

    文章

    8378

    瀏覽量

    132412
收藏 人收藏

    評(píng)論

    相關(guān)推薦

    什么是機(jī)器學(xué)習(xí)?通過機(jī)器學(xué)習(xí)方法能解決哪些問題?

    來源:Master編程樹“機(jī)器學(xué)習(xí)”最初的研究動(dòng)機(jī)是讓計(jì)算機(jī)系統(tǒng)具有人的學(xué)習(xí)能力以便實(shí)現(xiàn)人工智能。因?yàn)?b class='flag-5'>沒有學(xué)習(xí)能力的系統(tǒng)很難被認(rèn)為是具有智能
    的頭像 發(fā)表于 11-16 01:07 ?232次閱讀
    什么是<b class='flag-5'>機(jī)器</b><b class='flag-5'>學(xué)習(xí)</b>?通過<b class='flag-5'>機(jī)器</b><b class='flag-5'>學(xué)習(xí)</b>方法能解決哪些問題?

    NPU與機(jī)器學(xué)習(xí)算法的關(guān)系

    在人工智能領(lǐng)域,機(jī)器學(xué)習(xí)算法是實(shí)現(xiàn)智能系統(tǒng)的核心。隨著數(shù)據(jù)量的激增和算法復(fù)雜度的提升,對(duì)計(jì)算資源的需求也在不斷增長(zhǎng)。NPU作為一種專門為深度學(xué)習(xí)機(jī)器
    的頭像 發(fā)表于 11-15 09:19 ?310次閱讀

    具身智能與機(jī)器學(xué)習(xí)的關(guān)系

    具身智能(Embodied Intelligence)和機(jī)器學(xué)習(xí)(Machine Learning)是人工智能領(lǐng)域的兩個(gè)重要概念,它們之間存在著密切的關(guān)系。 1. 具身智能的定義 具身智能是指智能體
    的頭像 發(fā)表于 10-27 10:33 ?271次閱讀

    人工智能、機(jī)器學(xué)習(xí)和深度學(xué)習(xí)存在什么區(qū)別

    人工智能指的是在某種程度上顯示出類似人類智能的設(shè)備。AI有很多技術(shù),但其中一個(gè)很大的子集是機(jī)器學(xué)習(xí)——讓算法從數(shù)據(jù)中學(xué)習(xí)
    發(fā)表于 10-24 17:22 ?2446次閱讀
    人工智能、<b class='flag-5'>機(jī)器</b><b class='flag-5'>學(xué)習(xí)</b>和深度<b class='flag-5'>學(xué)習(xí)</b>存在什么區(qū)別

    【「時(shí)間序列與機(jī)器學(xué)習(xí)」閱讀體驗(yàn)】+ 簡(jiǎn)單建議

    這本書以其系統(tǒng)性的框架和深入淺出的講解,為讀者繪制了一幅時(shí)間序列分析與機(jī)器學(xué)習(xí)融合應(yīng)用的宏偉藍(lán)圖。作者不僅扎實(shí)地構(gòu)建了時(shí)間序列分析的基礎(chǔ)知識(shí),更巧妙地展示了機(jī)器學(xué)習(xí)如何在這一領(lǐng)域發(fā)揮巨
    發(fā)表于 08-12 11:21

    人工智能、機(jī)器學(xué)習(xí)和深度學(xué)習(xí)是什么

    在科技日新月異的今天,人工智能(Artificial Intelligence, AI)、機(jī)器學(xué)習(xí)(Machine Learning, ML)和深度學(xué)習(xí)(Deep Learning, DL)已成為
    的頭像 發(fā)表于 07-03 18:22 ?1113次閱讀

    機(jī)器學(xué)習(xí)算法原理詳解

    機(jī)器學(xué)習(xí)作為人工智能的一個(gè)重要分支,其目標(biāo)是通過讓計(jì)算機(jī)自動(dòng)從數(shù)據(jù)中學(xué)習(xí)并改進(jìn)其性能,而無需進(jìn)行明確的編程。本文將深入解讀幾種常見的機(jī)器學(xué)習(xí)
    的頭像 發(fā)表于 07-02 11:25 ?779次閱讀

    機(jī)器學(xué)習(xí)在數(shù)據(jù)分析中的應(yīng)用

    隨著大數(shù)據(jù)時(shí)代的到來,數(shù)據(jù)量的爆炸性增長(zhǎng)對(duì)數(shù)據(jù)分析提出了更高的要求。機(jī)器學(xué)習(xí)作為一種強(qiáng)大的工具,通過訓(xùn)練模型從數(shù)據(jù)中學(xué)習(xí)規(guī)律,為企業(yè)和組織提供了更高效、更準(zhǔn)確的數(shù)據(jù)分析能力。本文將深入探討機(jī)器
    的頭像 發(fā)表于 07-02 11:22 ?545次閱讀

    深度學(xué)習(xí)與傳統(tǒng)機(jī)器學(xué)習(xí)的對(duì)比

    在人工智能的浪潮中,機(jī)器學(xué)習(xí)和深度學(xué)習(xí)無疑是兩大核心驅(qū)動(dòng)力。它們各自以其獨(dú)特的方式推動(dòng)著技術(shù)的進(jìn)步,為眾多領(lǐng)域帶來了革命性的變化。然而,盡管它們都屬于機(jī)器
    的頭像 發(fā)表于 07-01 11:40 ?1194次閱讀

    機(jī)器學(xué)習(xí)的經(jīng)典算法與應(yīng)用

    關(guān)于數(shù)據(jù)機(jī)器學(xué)習(xí)就是喂入算法和數(shù)據(jù),讓算法從數(shù)據(jù)中尋找一種相應(yīng)的關(guān)系。Iris鳶尾花數(shù)據(jù)集是一個(gè)經(jīng)典數(shù)據(jù)集,在統(tǒng)計(jì)學(xué)習(xí)機(jī)器學(xué)習(xí)領(lǐng)域都經(jīng)常被
    的頭像 發(fā)表于 06-27 08:27 ?1576次閱讀
    <b class='flag-5'>機(jī)器</b><b class='flag-5'>學(xué)習(xí)</b>的經(jīng)典算法與應(yīng)用

    請(qǐng)問PSoC? Creator IDE可以支持IMAGIMOB機(jī)器學(xué)習(xí)嗎?

    我的項(xiàng)目使用 POSC62 MCU 進(jìn)行開發(fā),由于 UDB 模塊是需求的重要組成部分,所以我選擇了PSoC? Creator IDE 來進(jìn)行項(xiàng)目開發(fā)。 但現(xiàn)在,由于需要擴(kuò)展,我不得不使用機(jī)器學(xué)習(xí)模塊
    發(fā)表于 05-20 08:06

    機(jī)器學(xué)習(xí)如何助力芯片設(shè)計(jì)

    1959年,計(jì)算機(jī)游戲和人工智能的先驅(qū)亞瑟·塞繆爾(Arthur Samuel)將ML定義為“使計(jì)算機(jī)能夠在沒有明確編程的情況下學(xué)習(xí)的研究領(lǐng)域”。
    的頭像 發(fā)表于 03-29 10:03 ?491次閱讀

    機(jī)器學(xué)習(xí)8大調(diào)參技巧

    今天給大家一篇關(guān)于機(jī)器學(xué)習(xí)調(diào)參技巧的文章。超參數(shù)調(diào)優(yōu)是機(jī)器學(xué)習(xí)例程中的基本步驟之一。該方法也稱為超參數(shù)優(yōu)化,需要搜索超參數(shù)的最佳配置以實(shí)現(xiàn)最佳性能。
    的頭像 發(fā)表于 03-23 08:26 ?565次閱讀
    <b class='flag-5'>機(jī)器</b><b class='flag-5'>學(xué)習(xí)</b>8大調(diào)參技巧

    如何使用TensorFlow構(gòu)建機(jī)器學(xué)習(xí)模型

    在這篇文章中,我將逐步講解如何使用 TensorFlow 創(chuàng)建一個(gè)簡(jiǎn)單的機(jī)器學(xué)習(xí)模型。
    的頭像 發(fā)表于 01-08 09:25 ?916次閱讀
    如何使用TensorFlow構(gòu)建<b class='flag-5'>機(jī)器</b><b class='flag-5'>學(xué)習(xí)</b>模型

    彎曲時(shí)請(qǐng)小心:為什么不應(yīng)該利用元件腳端彎曲這個(gè)捷徑

    彎曲時(shí)請(qǐng)小心:為什么不應(yīng)該利用元件腳端彎曲這個(gè)捷徑
    的頭像 發(fā)表于 12-15 16:56 ?329次閱讀
    彎曲時(shí)請(qǐng)小心:為什么不應(yīng)該利用元件腳端彎曲這個(gè)<b class='flag-5'>捷徑</b>