工信部于2018年12月正式印發了《促進新一代人工智能產業發展三年行動計劃》,為2018年到2020年人工智能發展指明了前進的方向。計劃中的重點內容是培育八項智能產品和四項核心基礎,而智能傳感器正排在核心基礎的第一位,處于最基礎最重要的地位。
萬物相連技術鏈
“物聯網”、“大數據”和“機器人”等,其實這些趨勢是相互聯系在一起的,擰成一個大趨勢, 在這個鏈條里,每一環都會對下一環產生影響,如此產生積極的循環。 各種連接的設備里的傳感器會產生大量數據,海量數據使得機器學習成為可能,機器學習的結果就是AI,而AI又指導機器人去更精確地執行任務,機器人的行動又會觸發傳感器。這整個就是一個完整的循環。
1.傳感器產生數據
到2014年,連接到互聯網的設備超過了世界人口的總和。 Cisco預測,到2020年,將有500億個相互連接的設備。而這些設備中大多都會安傳感器,可能用Electric Imp內嵌傳感器,或者用Estimote外接一個傳感器。
設備中的傳感器會產生前所未有的海量數據。
2.數據支撐機器學習
在2020年,預計有35ZB的數據產生,也就是2009年數據量的44倍。到時候,不管是結構化的、或更可能是沒有結構化的數據都可以通過機器來處理,從而獲得大量洞見。
3.機器學習改善AI
機器學習依靠數據處理和模式識別,從而讓計算機不需要編程就能去學習?,F在的海量數據和計算能力都在驅使機器學習的突破。
機器學習的十足威力,看看Google就知道了。
Google就是利用機器學習,把法國每一個企業的位置、每一個住房、每一條街都繪制在地圖上了。整個過程只需1個小時。
4.人工智能指導機器人行動
隨著計算機已經在象棋和路標方面做得比人類好了,我們就有理由對未來有更多期待。隨著更多的傳感器采集到的數據越來越多,這能優化更多的機器學習算法,從而我們可以合乎邏輯地推斷,與機器人結合的計算機執行任務的能力會呈指數級增長。
5.機器人采取行動
不僅數以百計的公司在制作可以完成各種工作的機器人,機器人本身也會變得越來越智能, 而且借助AI的進步,還能完成很多我們夢寐以求的任務。
6.行動觸發傳感器
機器采取行動觸發傳感器來收集數據,從而整個循環就完整了。
這就是整個人工智能生態的技術鏈。
人工智能技術優化傳感器系統
人工智能技術能夠對傳感器系統有所幫助,它們是:基于知識的系統、模糊邏輯、自動知識收集、神經網絡、遺傳算法、基于案例推理和環境智能。這些技術在傳感器系統中的應用越來越廣泛,不僅因為它們確實有效,還因為今天的計算機應用越來越普及。
這些人工智能技術具有最低的計算復雜度,可以應用于小型傳感器系統、單一傳感器或者采用低容量微型控制器陣列的系統。正確應用人工智能技術將會創造更多富有競爭力的傳感器系統和應用。
人工智能領域的其他技術進步也將會給傳感器系統帶來沖擊,包括數據挖掘技術、多主體系統和分布式自組織系統。環境傳感技術能夠將很多微型電子處理器和傳感器集成到日常物品中,使其具有智能。它們可以創造智能環境,與其他智能設備通訊,并與人類實現交互。給出的建議能夠幫助用戶更加直觀地完成任務,但是這種集成技術的后果將會很難預測。使用環境智能和多種人工智能技術的組合能夠將這種技術發揮到極致。
創建更智能的傳感器系統
可以采用人工智能對傳感器系統進行優化。人工智能作為計算機科學的一個分支出現于20世紀50年代,它繁衍出了很多功能強大的工具,在傳感器系統中具有巨大作用,能夠自動解決那些原本需要人類智能才能夠解決的問題。
雖然人工智能進入工業領域的進程較為緩慢,但是它必將帶來靈活性、可重新配置能力和可靠性方面的進步。全新的系統設備在越來越多的任務中表現出超過人類的性能。隨著它們與人類越來越緊密,我們將人類大腦與計算機能力結合起來,實現商討、分析、推論、通訊和發明。
人工智能結合了多種先進技術,賦予了機器學習、采納、決策的能力,給予他們全新的功能。這一成就依賴于神經網絡、專家系統、自組織系統、模糊邏輯和遺傳算法等技術,人工智能技術將其應用領域擴展到了很多其他領域,其中一些領域需要對傳感器信息進行解析和處理,例如裝配、生物傳感器、建筑建模、計算機視覺、切割工具診斷、環境工程、力值傳感、健康監控、人機交互、網絡應用、激光銑削、維護和檢查、動力輔助、機器人、傳感器網絡和遙控作業等等。
這些人工智能方面的發展被引入到了更加復雜的傳感器系統中。點擊鼠標、輕敲開關或者大腦的思考都會將任何傳感器數據轉化為信息并發送給你。近期此項研究已經有所斬獲, 在如下七個領域中人工智能可以幫助傳感器系統。
1、基于知識的系統
基于知識的系統也被稱為專家系統,它是一種計算機應用程序,整合了大量與某一領域相關聯的問題解決方案。
專家系統通常有兩個組成部分,知識數據庫和推斷機制。知識數據庫以“如果-那么”的形式表述了這個領域內的各種知識,加上各種事實陳述、框架、對象和案例。推斷機制對存儲的知識進行操作,產生針對問題的解決方案。知識操作方法包含繼承和約束條件(在基于框架和面向對象的專家系統)、檢索并采納案例(案例系統)和應用推斷規則(規則系統),具體取決于某些控制程序(前向或反向鏈接)和搜索策略(深度優先或者廣度優先)。
基于規則的系統將系統的知識描述為“如果-那么-否則”的形式。特殊的知識可以用于據側。這些系統善于以人類稔熟的形式呈現知識并作出決策。
由于使用嚴格的規則限制,它們并不擅長于應對不確定的任務和不精確的場景。典型的規則系統具有四個組成部分:規則列表或者規則數據庫(知識數據庫的一種特殊形式)、推斷引擎或者解析器(根據輸入和規則數據庫推斷信息或者采取行動)、臨時工作存儲器、用戶接口或者其他與外部世界的互通方法,將輸入和輸出信號接收進來和發送出去。
基于案例推理方法是基于過往問題的經驗解決現有問題。這種解決方案被存儲于數據庫之中,作為人類專家的經驗總結。當系統發生了前所未有的問題,它會將問題與過往問題對比,找到一個與現有問題最為相近的案例。然后按照過往的解決方案解決問題,并按照成功和失敗與否更新數據庫。基于案例推理系統通常被認為是規則系統的一種擴展,他們善于以人類稔熟的形式呈現知識,具有從過往案例學習并產生新案例的能力。
2、基于案例推理
基于案例推理針對計算機應用形成了四個步驟:
1、檢索:給出目標問題,從內存檢索相關案例以解決這個問題。案例包括問題、解決方案以及關于這個解決方案是如何得到的注釋。
2、重用:將解決方案從過往案例映射到目標問題上。這一過程包括對新場景適應性變更。
3、修改:在將解決方案從過往案例映射到目標場景之后,測試新的解決方案在真實世界(或者仿真場景)中是否奏效,如果必要,進行修改。
4、保留:如果解決方案成功地解決了目標問題,那么將解決方案作為全新案例存儲于內存中。
這一方法的爭論點在于它采納了一些未經證實的證據作為主要作業準則。沒有統計相關數據作為支撐,很難確保結論的準確性。所有根據少量數據做出的推理都被認為是未經證實的證據。
基于案例推理這一概念的宗旨就是將過往問題的解決方案應用在當前問題上。這種解決方案被存儲于數據庫之中,作為人類專家的經驗總結。當系統發生了前所未有的問題,它會將問題與過往問題對比,找到一個與現有問題最為相近的案例。然后按照過往的解決方案解決問題,并按照成功和失敗與否更新數據庫。
基于案例推理系統通常被認為是規則系統的擴展。和規則系統類似,基于案例推理系統善于以人類稔熟的方式呈現知識,不但如此,基于案例推理系統還具有從過往案例學習并產生新案例的能力。圖1所示為基于案例推理系統。
圖示1是基于案例推理系統,和基于規則的系統一樣,基于案例推理系統的擅長之處在于以人類稔熟的方式呈現信息;同時,基于案例推理系統也具有從過去案例學習進而創建新增案例的能力。
很多專家系統再開發時都采用了一種被稱為“殼”的程序,它是一種配備了完整的推斷和知識存儲設備但是并不具備相關領域內知識的專家系統。一些復雜的專家系統的構建依賴于“開發環境”,后者比殼的應用更加靈活,為用戶提供了構建自定義判斷和知識呈現方法的機會。
專家系統恐怕是這些技術中最為成熟的一種,有很多商業殼系統和開發工具可供使用。一旦某一領域內的知識被導入了專家系統,構建整個系統的過程就相對簡單了。由于專家系統便于使用,所以應用廣泛。在傳感器系統中,有很多應用領域,包括選擇傳感器輸入、解析信號、狀態監控、故障診斷、機器和過程控制、機器設計、過程規劃、生產規劃和系統配置。專家系統的應用還包括裝配、自動編程、復雜智能車輛的控制、檢查規劃、預測危險、選擇工具和加工策略、工序規劃和工廠擴建的控制。
3、模糊邏輯
普通規則專家系統有一個劣勢,就是它無法應對超出知識數據庫范圍的情況。當這種情況出現時,這些規則系統無法給出結果。這些情況發生時系統就會“當機”,而不似人類專家在面對全新問題的時候表現出來的是性能降低。
模糊邏輯的使用,引入了人類判斷所具有的定型判斷和不精確的特性,可以提升專家系統的適應性。模糊邏輯將變量值變為一種語言上的描述,這些描述的含義就是模糊集合,而判斷正是依據這些表述所做出。
模糊專家系統使用模糊邏輯來應對不完全數據或者被部分損壞的數據所帶來的不確定性。這種技術使用模糊集合的數學理論來仿真人類判斷的過程。人類可以很輕松地在決策過程中應對語意不明的情況(灰色地帶),而機器認為這很難。圖2所示為模糊邏輯控制器的架構。
圖2所示為模糊邏輯控制器的架構。
模糊邏輯有在傳感器系統中有很多應用,因為這一范疇的知識并不精確。模糊邏輯非常適用于那些在結構和對象無法精確匹配的領域、解析度受限的場合、數字重構方法和圖像處理領域。在結構對象識別領域和場景解析領域都有模糊集合的應用。模糊專家系統適用于要求處理不確定性和不精確性的場合。它們不具備學習的能力,因為系統的關鍵參數都已經預設好了,無法改變。
模糊邏輯在協同作業機器人領域、汽車機器人、感知預測、供應鏈管理和焊接領域獲得了成功。
4、自動知識獲取
收集某一領域內的知識以構建知識數據庫是非常復雜且耗時的,它往往是搭建專家系統的瓶頸所在。自動知識收集技術被開發出來以解決這一問題。這種學習程序通常要求采用多個案例作為學習的輸入。每一個案例都具有多種屬性參數,并按類型歸類。一種方法就是采用“分治策略”,根據某一策略對各種屬性進行篩選,將原有的案例集合劃分為子集合,然后歸納學習程序建立決策樹并將給定的案例集合正確分類。決策樹能夠表述從集合中的特定案例產生出什么知識。這一方法還可以后續應用于處理那些沒有被案例集合覆蓋的情況。
另一種方法被稱為“覆蓋法”,歸納學習程序的目標是找到一組被某一類型的案例所共同持有的屬性,并將這一共同屬性作為“如果”的部分,將類型做為“然后”的部分。程序將集合中符合規則的案例移除直至沒有共同屬性。
還有一種使用邏輯程序代替命題邏輯的方法就是對案例進行描述然后表述全新的概念。這種方法使用了更加強大的預測邏輯來描述訓練案例和背景知識,然后表述全新概念。預測邏輯允許使用不同型式的訓練案例和背景知識,它允許歸納過程的結果(歸納概念)以帶有變量的一階子句的形式描述,而不僅限于由屬性-值對組成的零階命題子句。這種系統主要有兩種類型,第一種是由上自下的歸納/總結方法,第二種是反向解析原理。
已經出現了不少的學習程序,例如ID3,它是一種分治策略程序;AQ程序采用了覆蓋法;FOIL程序是采用了歸納/總結方法的ILP系統;GOLEM程序是采用反向解析方法的ILP系統。雖然大多數程序產生的都是明確的決策規則,但是也有一些算法能夠產生模糊規則。要求以嚴格的格式提供案例集合(明確的屬性和明確的分類)在傳感器系統和傳感器網絡中很容易滿足,因此自動學習技術在傳感器系統中應用頗為廣泛。這種類型的學習適合于那些屬性是以離散的或者符號的形式所表示,而并非適用于具有連續屬性值的傳感器系統案例。一些推斷學習應用的例子包括激光切割、礦石檢測和機器人應用。
圖3所示為一個虛擬系統流程圖,顯示了系統如何從圖像傳感器收集數據。視覺數據和CAD模型數據被搭配使用,用來確定對象列表,對象列表隨后被發送給焊接識別模塊,然后采用人工智能技術明確焊接要求。
5、神經網絡
神經網絡也可以從案例中提取領域知識,它們提取的領域知識并非以表征的方式描述,例如規則或者決策樹,而且它們可以同時應對連續數據和離散數據。它們也具有與模糊專家系統類似的不錯的歸納能力。神經網絡是大腦的計算機模型,神經網絡模型通常假設計算過程可以使用多個簡單的被稱為神經元的單元所描述,神經元可以相互連接并行作業。
最常見的神經網絡是多層感知器,它是一種前饋網絡:所有信號以一種方向傳輸,從輸入到輸出。前饋網絡能夠在輸入空間和輸出空間進行靜態映射:在某一時刻的輸出僅與這一時刻的輸入構成函數關系。周期型網絡中,某些神經元的輸出反饋會同一個神經元或者反饋回之前層級的神經元,可以認為具有動態內存:這種網絡在某一時刻的輸出受當前輸入和之前輸入和輸出的影響。
不顯性表述的“知識”通過對神經網絡進行訓練而內置于神經網絡內。某些神經網絡能夠使用預先定義的特定輸入模式進行訓練,進而產生預期的輸出模式。實際輸出和預期輸出之間的差異用來對神經元之間連接的強度和權值進行修正。這種方法被稱為監督訓練。在多層感知器中,監督訓練的反向傳播算法通常用來傳播來自于輸出神經元的誤差,然后計算出隱含層神經元的修正權值。
人工神經網絡通常具有輸入和輸出,在輸入和輸出之間的隱藏層完成處理任務。輸入是獨立的變量,而輸出是相互關聯的。人工神經網絡是具有可配置內部參數的靈活的數學方程。為了精確地展現復雜的關系,通過訓練算法來調整這些參數。在簡單訓練模式下,輸入案例和相應的預期輸出同時展現給網絡,通過盡可能多的案例進行重復進行自調整過程。一旦訓練結束,人工神經網絡就能夠接受全新的輸入,預測正確的輸出。
為了產生輸出,網絡只需要按方程計算即可。唯一的假設就是在輸入數據和輸出數據之間存在某種連續的函數關系。神經網絡適用于映射設備、模式歸類或者模式補全(自動聯想內容尋址內存和模式關聯器)。
圖4所示為傳感器系統針對焊接識別模塊做出焊接要求建議。這一模塊評估建議并決定最佳的焊接軌跡。建議隨后被發送給實際的機器人程序生成器。
近期的應用包括特征識別、熱交換器、焊點檢查、點焊參數優化、電力、觸覺顯示和車輛傳感系統。
6、遺傳算法
遺傳算法是一種隨機最優化過程,其靈感來自于自然演化。遺傳算法能夠在復雜的多向搜索中產生全局最優解決方案,無需針對問題本身的特定知識。遺傳算法已經在傳感器系統中找到了用武之地,包括復雜組合或者多參數優化,包括裝配、裝配流水線平衡、故障診斷、健康監控和動力方向盤。
7、環境智能
環境智能在最近幾十年獲得了長足的發展,見證了人類在數字控制環境中便利的工作過程,電子設備可以預測他們的行為并做出響應。環境智能的概念用于實現人類和傳感器系統之間的無縫匹配,滿足實際的預期的需求。工業領域內的應用尚有局限,但是新型的更加智能且具有更高交互性的系統已經處在研究階段。
擴展系統
人工智能能夠增加通訊的有效性、減少故障、最小化誤差并延長傳感器的壽命。在過去40年間,人工智能技術帶來了一系列功能強大的工具,如前文所列。這些工具在傳感器系統中的應用越來越廣泛。合理地采用新型人工智能技術方法將會有助于構建更加具有競爭力的傳感器系統。由于工程師對這種技術的陌生以及使用這些工具仍舊存在的技術壁壘,也許還需要另一個10年工程師們才能夠接納它們。然而,這一領域的研究不會停歇,很多新型傳感器應用正在出現,這些技術的搭配使用將會發揮出更大的作用。
從智能工廠的應用,對電網、空氣、公路等監測網絡的實施,傳感器的發展領域一直在不斷的擴大。計劃落地后,現在又提出人工智能飛進千家萬戶,家用產品會變得越來越智能,萬物互聯時代正在飛速的發展,未來人們的生活可能方方面面都離不開最基礎的傳感器。這對于傳感器行業來說,是莫大的機遇。
-
傳感器
+關注
關注
2548文章
50740瀏覽量
752143 -
人工智能
+關注
關注
1791文章
46896瀏覽量
237670
原文標題:人工智能化的傳感器技術
文章出處:【微信號:bdtdsj,微信公眾號:中科院半導體所】歡迎添加關注!文章轉載請注明出處。
發布評論請先 登錄
相關推薦
評論