精品国产人成在线_亚洲高清无码在线观看_国产在线视频国产永久2021_国产AV综合第一页一个的一区免费影院黑人_最近中文字幕MV高清在线视频

0
  • 聊天消息
  • 系統消息
  • 評論與回復
登錄后你可以
  • 下載海量資料
  • 學習在線課程
  • 觀看技術視頻
  • 寫文章/發帖/加入社區
會員中心
創作中心

完善資料讓更多小伙伴認識你,還能領取20積分哦,立即完善>

3天內不再提示

相控陣波束成形IC如何簡化天線設計詳細解決方法說明

MEMS ? 來源:未知 ? 2019-03-24 10:02 ? 次閱讀

為提高性能,無線通信和雷達系統對天線架構的需求不斷增長。只有那些功耗低于傳統機械操縱碟形天線的天線才能實現許多新的應用。除了這些要求以外,還需要針對新的威脅或新的用戶快速重新定位,傳輸多個數據流,并以超低的成本……正在席卷整個行業的相控天線設計為這些挑戰提供了解決辦法。

本文簡要介紹另外現有的天線解決方案以及電控天線的優勢所在。在此基礎上,還介紹了半導體技術的發展如何幫助實現改進電控天線 SWaP-C 這一目標,然后舉例說明 ADI 技術是如何做到這一點的。

簡介

依靠天線發送和接收信號的無線電子系統已經運行了100多年。隨著精度、效率和更高級指標變得越來越重要,這些電子系統將繼續改進和完善。在過去幾年中,碟形天線已被廣泛用于發射 (Tx) 和接收 (Rx) 信號,其中方向性至關重要,并且經過多年的優化,許多這些系統都能以相對低的成本良好地運行。這些碟形天線擁有一個用于旋轉輻射方向的機械臂,它們的確存在一些缺點,包括轉向慢、物理尺寸大、長期可靠性差并且只有一個符合要求的輻射圖或數據流。因此,工程師們已轉向先進的相控陣天線技術來改進這些特性、添加新功能。

相控陣天線采用電動轉向機制,相比傳統機械轉向天線具有諸多優點,例如高度低/體積小、更好的長期可靠性、快速轉向、多波束等。憑借這些優勢,相控陣已經被防務應用、衛星通信和包括車聯網在內的5G電信等應用中得到廣泛運用。

相控陣技術

相控陣天線是組裝在一起的天線元件的集合,其中,每個元件的輻射圖均在結構上與相鄰天線的輻射圖組合形成稱為主瓣的有效輻射圖。主瓣在期望位置發射輻射能量,而根據設計,天線負責破壞性地干擾無用方向上的信號,形成無效信號和旁瓣。天線陣列設計用于最大化主瓣輻射的能量,同時將旁瓣輻射的能量降低到可接受的水平??梢酝ㄟ^改變饋入每個天線元件的信號的相位來操縱輻射方向。

圖1展示了如何通過調整每個天線中信號的相位,將有效波束控制在線性陣列的目標方向上。結果,陣列中的每個天線都具有獨立的相位和幅度設置,以形成期望的輻射圖。由于沒有機械運動部件,所以很容易理解相控陣中波束快速轉向的屬性。

圖1 相控陣元件基礎理論圖

基于IC的半導體相位調整可以在幾納秒內完成,這樣我們就可以改變輻射圖的方向,針對新的威脅或用戶快速做出響應。類似地,我們可以從輻射波束變為有效零點以吸收干擾物的信號,使該物體看起來不可見,隱形飛機即是如此。重新定位輻射圖或改變為有效零點,這些變化幾乎可以立即完成,因為我們可以使用基于IC的器件而非機械部件,以電氣方式改變相位設置。相控陣天線相比機械天線的另一個優勢是它能同時輻射多個波束,因而可以跟蹤多個目標或管理多個數據流的用戶數據。這是通過在基帶頻率下對多個數據流進行數字信號處理來實現的。

該陣列的典型實現方式使用以等間隔行列配置的貼片天線元件,其采用4×4式設計,意味著總共有16個元件。圖2所示為一個小型4×4陣列,其中,貼片天線為輻射器。在地面雷達系統中,這種天線陣列可以變得非常大,可能有超過100,000個元件。

圖2 4×4元件列陣的輻射圖展示

在設計時要考慮陣列大小與每個輻射元件的功率之間的權衡關系,這些元件會影響波束的方向性和有效輻射功率??梢酝ㄟ^考察一些常見的品質因數來預測天線的性能。通常,天線設計人員會考察天線增益、有效各向輻射功率 (EIRP) 及Gt/Tn。有一些基礎等式可用于描述以下等式中所示的這些參數。我們可以看到,天線增益和EIRP與陣列中元件的數量成正比。這可能導致地面雷達應用中常見的大型陣列。



其中:
N = 元件數量Ge = 元件增益Gt = 線增益Pt = 發射機總功率Pe = 每個元件的功率Tn = 噪聲溫度

相控陣天線設計的另一個關鍵方面是天線元件的間隔。一旦我們通過設定元件數量確定了系統目標,物理陣列直徑很大程度上取決于每個單元構件的大小限制,其要小于大約二分之一波長,因為這樣可以防止柵瓣。柵瓣相當于在無用方向上輻射的能量。這對進入陣列的電子器件提出了嚴格的要求,必須做到體積小、功率低、重量輕。半波長間隔在較高頻率下對設計特別具有挑戰性,因為其中每個單元構件的長度會變小。這推高了更高頻率IC的集成度,促使封裝解決方案變得更加先進,并且使困難不斷增加的散熱管理技術得到了簡化。

我們構建整個天線時,陣列設計面臨許多挑戰,包括控制線路由、電源管理、脈沖電路、散熱管理、環境考慮因素等。業界有一股龐大的推動力量,促使我們走向體積小、重量輕的低剖面陣列。傳統的電路板結構使用小型PCB板,其上的電子元件垂直饋入天線PCB的背面。在過去的20年中,這種方法不斷改進,以持續減小電路板的尺寸,從而減小天線的深度。下一代設計從這種板結構轉向平板式方法,其中,每個IC都有足夠高的集成度,可以簡單地安裝在天線板的背面,大大減小了天線的深度,使它們能更容易地裝入便攜應用或機載應用當中。

在圖3中,左圖展示了PCB頂部的金色貼片天線元件,右圖顯示了PCB底部的天線模擬前端。這只是天線的一個子集,其中,天線一端可能發生頻率轉換級;同時也是一個分配網絡,負責從單個RF輸入開始路由到整個陣列。顯然,集成度更高的IC顯著減少了天線設計中的挑戰,并且隨著天線變得越來越小,越來越多的電子元件被集成到越來越小的空間中,天線設計需要新的半導體技術來幫助提高解決方案的可行性。

圖3 平板陣列,圖中所示為PCB頂部的天線貼片,IC則位于天線PCB的背面

數字波束合成與模擬波束合成

過去幾年設計的大多數相控陣天線都使用了模擬波束成形技術,其中的相位調整是在RF或IF頻率下進行的,并且整個天線都采用一組數據轉換器。人們越來越關注數字波束成形,其中,每個天線元件都有一組數據轉換器,并且相位調整是在FPGA或某些數據轉換器中以數字方式完成的。數字波束成形有許多好處,從輕松傳輸多條波束的能力,甚至還能即刻改變波束的數量。這種卓越的靈活性在許多應用中都具有極強的吸引力,并且對其普及化也起著推動作用。數據轉換器的不斷改進降低了功耗并且擴展到了更高的頻率,L波段和S波段的RF采樣使這項技術可以用于雷達系統。

在考慮模擬與數字波束成形兩個選項時,需要考慮多種因素,但分析通常取決于所需波束數量、功耗和成本目標。數字波束成形方法因每個元件搭配一個數據轉換器,所以其功耗通常較高,但是在形成多個波束方面,卻極其靈活、便利。數據轉換器還需要更高的動態范圍,因為拒絕阻塞的波束成形只能在數字化之后完成。模擬波束成形可以支持多個波束,但每個波束需要額外的相位調整通道。例如,為了形成100波束的系統,需要將1波束系統的RF移相器的數量乘以100,因此數據轉換器與相位調整IC的成本考慮因素可能根據波束的數量而改變。

類似地,對于可以利用無源移相器的模擬波束成形方法,其功耗通常較低,但隨著波束數量的增加,如果需要額外的增益級來驅動分配網絡,則功耗也將增加。常見的折衷方案是混合式波束成形方法,其中有模擬波束成形子陣列,隨后是子陣列信號的一些數字組合。這是業內日益熱門的一個領域,并將在未來幾年繼續發展壯大。

半導體技術

標準脈沖雷達系統發射可以從物體上反射的信號,雷達等待返回脈沖以映射天線的視場。在過去幾年中,這種天線前端解決方案會采用分立式元件,此類元件很可能采用砷化鎵技術。用作這些相控陣天線構建模塊的I C元件如圖4所示。

圖4 相控陣天線的典型RF前端示例

它們包括一個用于調整每個天線元件相位(最終控制天線)的移相器、一個可以使波束逐漸變細的衰減器、一個用于傳輸信號的功率放大器和一個用于接收信號的低噪聲放大器,另有一個用于在發射與接收之間切換的開關。在過去的實施方案中,這些IC中的每一個都可能放在5mm×5mm的封裝中,更先進的解決方案則可能用集成式單片單通道GaAs IC來實現該功能。

相控陣天線近年來的普及離不開半導體技術的推動。SiGe BiCMOS、SOI(絕緣體上硅)和體CMOS中的高級節點將用于控制陣列中轉向的組合數字電路以及用于實現相位和幅度調整的RF信號路徑集成到單個IC當中。如今,我們已經可以實現多通道波束成形IC,此類IC可在4通道配置中調整增益和相位,最多可支持32個通道,可用于毫米波設計。

在一些低功耗示例中,基于硅的I C有可能為上述所有功能提供單片解決方案。在高功率應用中,基于氮化鎵的功率放大器顯著提高了功率密度,以適應相控陣天線單元構件的需求,傳統上這些天線基本上由基于行波管 (TWT) 的功率放大器或基于較低功率GaAs的功率放大器伺服。

在機載應用中,我們看到了平板架構日益盛行的趨勢,因為其同時具有GaN技術的功率附加效率 (PAE) 優勢。GaN還使大型地基雷達能夠從由TWT驅動的碟形天線轉向基于相控陣的天線技術。我們目前能使用單片GaN IC,這類IC能提供超過100瓦的功率,PAE超過50%。將這種PAE水平與雷達應用的低占空比相結合,可以確定天線陣列的尺寸、重量和成本。

在GaN的純功率能力以外,與現有GaAs IC解決方案相比的額外好處是尺寸減小了。將X波段的6 W至8 W GaAs功率放大器與基于GaN的解決方案進行比較可將占位面積減少50%或以上。在將這些電子器件裝配到相控陣天線的單元構件中時,這種占位面積的減小有著顯著的意義。

ADI的模擬相控陣IC

ADI 開發了集成模擬波束成形IC,其可以支持雷達、衛星通信、5G通信等一系列應用。ADAR1000X-/Ku波段波束成形IC是一款4通道器件,覆蓋頻段為8 GHz至16 GHz,工作于時分雙工 (TDD) 模式,其發射器和接收器集成在一個IC當中。該器件是X波段雷達應用以及Ku波段衛星通信的理想選擇,在這類應用中,IC可以配置為僅以收發器模式或僅接收器模式運行。這款4通道IC采用7 mm×7 mmQFN表貼封裝,可輕松集成到平板陣列當中,在發射模式下功耗僅為240 mW/通道,在接收模式下功耗僅為160 mW/通道。收發器和接收器通道直接可用,在外部設計上可以與AD I公司提供的前端模塊 (FEM) 配合使用。

圖5顯示了具有全360°相位覆蓋的增益和相位控制,可以實現小于2.8°的相位步長和優于31 dB的增益控制。ADAR1000集成片上存儲器,可存儲多達121個波束狀態,其中一個狀態包含整個IC的所有相位和增益設置。發射器提供大約19 dB的增益和15 dBm的飽和功率,其中接收增益約為14 dB。另一個關鍵指標是增益控制的相位變化,其在20 dB范圍內約為3°。同樣,在整個360°相位覆蓋范圍內,相位控制的增益變化約為0.25 dB,緩解了校準難題。

圖5 ADAR1000 Tx增益/回波損耗和相位/增益控制,頻率 = 11.5 GHz

該波束成形IC專為模擬相控陣應用或混合陣列架構而開發,混合陣列架構將一些數字波束成形技術與模擬波束成形技術結合了起來。ADI公司提供從天線到位的完整解決方案,包括數據轉換器、頻率轉換、模擬波束成形IC以及前端模塊。組合芯片組使ADI公司能夠將多種功能組合起來并對IC進行適當優化,從而輕松地為客戶實現天線設計。

圖6 訪問 analog.com/phasedarray,了解有關ADI相控陣產品的更多信息

聲明:本文內容及配圖由入駐作者撰寫或者入駐合作網站授權轉載。文章觀點僅代表作者本人,不代表電子發燒友網立場。文章及其配圖僅供工程師學習之用,如有內容侵權或者其他違規問題,請聯系本站處理。 舉報投訴
  • 半導體
    +關注

    關注

    334

    文章

    27063

    瀏覽量

    216494
  • IC
    IC
    +關注

    關注

    36

    文章

    5907

    瀏覽量

    175275
  • 天線
    +關注

    關注

    68

    文章

    3184

    瀏覽量

    140713

原文標題:如何簡化天線設計?相控陣波束成形IC來助您

文章出處:【微信號:MEMSensor,微信公眾號:MEMS】歡迎添加關注!文章轉載請注明出處。

收藏 人收藏

    評論

    相關推薦

    相控陣波束成形IC簡化天線設計

    無線通信和雷達系統正面臨著對天線架構(例如相控陣)日益增長的要求,以提高性能。許多新應用只能使用比傳統機械控制碟形天線更薄的天線,其功耗更低。除了這些要求之外,還希望快速重新定位新的威
    的頭像 發表于 12-22 15:15 ?1853次閱讀
    <b class='flag-5'>相控陣</b><b class='flag-5'>波束成形</b><b class='flag-5'>IC</b><b class='flag-5'>簡化</b><b class='flag-5'>天線</b>設計

    毫米波波束成形天線設計

    在本文中,我將介紹毫米波(mmW)波束成形天線技術的各個方面以及我認為有趣和獨特的技術設計實例。 波束成形 波束形成網絡(BFN)用于將來自小天線
    的頭像 發表于 06-12 11:06 ?1.6w次閱讀

    雷達模擬波束成形和數字波束成形的區別

    模擬波束成形(ABF)是指從相控陣天線的每個元件接收到的回波信號, 在射頻載波頻率級別進行組合。這款模擬波束成形器最多可饋電四個 集中式接收通道,將信號下變頻至基本頻段 (或中頻,如果)。以下模數轉換器 (ADC) 數字化IF或
    發表于 10-13 12:39 ?4616次閱讀
    雷達模擬<b class='flag-5'>波束成形</b>和數字<b class='flag-5'>波束成形</b>的區別

    【模擬對話】相控陣波束成形IC簡化天線設計

    天線PCB的背面。數字波束合成與模擬波束合成過去幾年設計的大多數相控陣天線都使用了模擬波束成形技術,其中的相位調整是在RF或IF頻率下進行的
    發表于 10-01 08:30

    麥克風波束成形的基本原理和陣列配置是什么?

    麥克風波束成形的基本原理是什么?麥克風波束成形的陣列配置是什么?
    發表于 06-01 06:02

    相控陣天線波束成形在無線通信中找到新用武之地

    基于多輸入多輸出(MIMO)相控陣天線波束成形技術似乎形成了整個5G蜂窩技術的一個組件。雖然多年來相控陣一直是雷達的基礎部件,但它們正在無線通信中找到新的用武之地。
    發表于 08-22 11:03 ?9次下載

    簡化相控陣雷達設計,ADI全新天線芯片不能少!

    ADI 推出高集成度有源天線波束成形芯片 ADAR1000,其支持相控陣雷達和通信系統設計人員利用緊湊的固態解決方案快速取代龐大的機械轉向天線平臺。
    的頭像 發表于 05-18 15:27 ?4244次閱讀

    波束成形的類型及其在RF PCB中的用途

    您可以感謝電信界在技術詞典中提供 MIMO 和波束形成新的流行語。這兩個概念不是很好理解,并且密切相關。波束成形是擴大 5G 和 WiFi 6 / 6E 覆蓋范圍以及通過單個天線陣列提供多用戶訪問
    的頭像 發表于 11-04 19:45 ?4679次閱讀

    毫米波波束成形天線技術的實例說明

    天線陣中每個單獨的小天線因為陣列因子而導致發射信號方向不一,而波束成形網絡(BFN)可以將它們發射的信號組合成更具方向性的圖案。波束成形器可用于雷達和通信系統。一個雷達示例是為汽車雷達
    發表于 12-29 05:10 ?20次下載
    毫米波<b class='flag-5'>波束成形</b>和<b class='flag-5'>天線</b>技術的實例<b class='flag-5'>說明</b>

    相控陣波束成形IC簡化天線設計說明

    作者:Keith Benson 摘要 為提高性能,無線通信和雷達系統對天線架構的需求不斷增長。只有那些功耗低于傳統機械操縱碟形天線天線才能實現許多新的應用。除了這些要求以外,還需要針對新的威脅
    的頭像 發表于 12-03 10:24 ?590次閱讀

    相控陣波束成形IC簡化天線設計

    作者:Keith Benson 摘要 為提高性能,無線通信和雷達系統對天線架構的需求不斷增長。只有那些功耗低于傳統機械操縱碟形天線天線才能實現許多新的應用。除了這些要求以外,還需要針對新的威脅或
    發表于 01-30 06:26 ?9次下載
    <b class='flag-5'>相控陣</b><b class='flag-5'>波束成形</b><b class='flag-5'>IC</b><b class='flag-5'>簡化</b><b class='flag-5'>天線</b>設計

    具有1.5dB NF LNA的Rx波束成形解決方案

      總之,LNA 是 ESA 平板天線中最關鍵和影響最大的組件。利用瑞薩電子獨特的異構偽芯片 IC 架構以及單獨的 LNA 和波束成形芯片,我們能夠快速發展完整的Rx波束成形解決方案,
    的頭像 發表于 04-26 14:44 ?1577次閱讀
    具有1.5dB NF LNA的Rx<b class='flag-5'>波束成形</b>解決方案

    波束相控陣接收機混合波束成形功率優勢的定量分析

    在本文中,比較了不同的波束成形方法,特別關注創建多個同時波束的能力和功率效率。相控陣在現代雷達和通信系統中發揮著越來越重要的作用,這重新引起了人們對提高系統性能和效率的興趣。數字
    的頭像 發表于 12-14 16:03 ?3274次閱讀
    多<b class='flag-5'>波束</b><b class='flag-5'>相控陣</b>接收機混合<b class='flag-5'>波束成形</b>功率優勢的定量分析

    關于波束成形波束控制天線的相關基礎知識

    天線波束成形天線波束控制是越來越多地用于蜂窩或移動電信等系統的技術,尤其是 5G 以及許多其他無線通信。據IC先生了解,隨著對更快的數據速
    的頭像 發表于 04-25 10:50 ?4087次閱讀
    關于<b class='flag-5'>波束成形</b>和<b class='flag-5'>波束</b>控制<b class='flag-5'>天線</b>的相關基礎知識

    天線波束成形的基礎知識入門

    天線的各項參數中,波束成形是一個比較特別的存在,它源于自適應天線的一個概念。
    的頭像 發表于 11-24 11:28 ?1320次閱讀
    <b class='flag-5'>天線</b><b class='flag-5'>波束成形</b>的基礎知識入門