現階段實現寬頻頻率/電壓轉換電路的方法是直接利用寬頻頻率/電壓轉換芯片,例如ADI公司生產的基于ΣΔ技術的頻率/電壓轉換芯片AD7740、AD7741、AD652、AD654、AD650及ADVFC32等。但是這些芯片構成的頻率/電壓轉換電路的允許頻率范圍最大也只有3MHz左右,而且芯片的成本較高,構成的電路結構比較復雜,功耗較大。本文提出了一種利用分頻及放大原理對LM331的頻率轉換范圍進行擴展的方法,設計了一種寬頻頻率/電壓轉換電路,解決了一般頻率/電壓轉換芯片轉換頻率低的問題。
1、硬件電路設計
1.1、系統框圖
基于LM331的寬頻頻率/電壓轉換電路的系統結構框圖如圖1所示,它由主控電路、分頻電路、頻率電壓轉換電路、放大電路四部分組成。主控電路采用AT89S52單片機作為主控芯片;分頻電路采用高速雙D型觸發器、十進制同步加/減計數器、雙4選1數據選擇器來實現;頻率/電壓轉換電路由頻率/電壓轉換芯片LM331及一些電阻電容構成;放大電路由運算放大器、雙向模擬開關及電阻網絡來實現。
為了實現寬頻頻率電壓轉換,首先將整形后待處理信號經400分頻后,由AT89S52單片機測量信號頻率并選擇合適的分頻比,控制分頻電路重新對整形后的信號進行分頻;同時單片機控制放大電路產生相應放大倍數的信號,重新分頻后的信號經過頻率/電壓轉換電路轉換為電壓信號,最后經放大電路放大相應的倍數后輸出以完成寬頻頻率/電壓轉換。
1.2、基于LM331的寬頻頻率電壓轉換電路的設計
1.2.1、頻率/電壓轉換
頻率/電壓轉換就是把輸入的脈沖信號轉換為電壓信號輸出的一種電路。輸出的電壓與輸入的脈沖頻率成線性關系,并可通過測量其輸出端的電壓值來間接測量輸入的脈沖頻率。頻率/電壓轉換電路由專用的頻率/電壓轉換芯片LM331及少量的電阻電容組成。
LM331外接電路簡單,只需接入幾個外部元件就可方便構成V/F或F/V等變換電路,并且容易保證轉換精度。LM331構成的頻率/電壓轉換電路如圖2所示,經放大整形后的信號Fi1經過R1、C3組成的微分電路加到LM331的6腳。當Fi1的下降沿到來時經過微分電路將在6腳產生負向尖峰脈沖,當負向尖峰脈沖大于VCC/3時LM331的內部觸發器將置位,其內部的電流源對電容CL充電,同時電源VCC通過Rt對電容Ct充電。當CL上的電壓大于2VCC/3時,LM331內部的觸發器復位,CL通過RL放電,同時定時電容Ct迅速放電,完成一次充放電過程。此后,每經過一次充放電過程電路重復上面的工作過程,這樣就實現了頻率/電壓的轉換。LM331輸出的電壓Vf1與輸入信號頻率Fi1的關系可表示為:
1.2.2、分頻電路的設計
由于LM331最大電壓轉換頻率為100kHz,要處理頻率較高的信號,首先需要對放大整形后的信號進行分頻。分頻電路如圖3所示。分頻電路主要是由高速雙D型觸發器74ALS74、計數器74ALS168和數據選擇器74ALS153組成。當待處理信號的頻率較高時,先將其400分頻后送入主控電路測量頻率并選擇合適的分頻比,進行不分頻、4分頻、40分頻或400分頻。這時分頻電路設計的脈沖占空比為50%,滿足頻率/電壓轉換電路要求輸入脈沖信號的占空比必須為30%以上的要求。
1.2.3、程控放大電路的設計
待處理信號經分頻電路分頻并完成頻率/電壓轉換后,需程控放大電路按照相應的分頻比對電壓信號進行放大。程控放大電路如圖4所示,該電路由運算放大器OP37、4雙向模擬開關CD4066及電阻網絡構成。主控芯片AT89S52單片機通過寫不同的控制字控制模擬開關選擇合適的電阻網絡,從而調節放大電路的放大倍數。
該電路的特點是把電阻網絡及模擬開關接在運算放大器的反相輸入端之前,使得模擬開關的電阻對放大倍數幾乎沒有影響。在運算放大器的1引腳和8引腳接Rp用于實現運算放大器的調零。該電路可以實現不放大、放大4倍、放大40倍、放大400倍。
2、軟件設計
程序流程圖如圖5所示,系統上電完成器件初始化后,等待啟動鍵K2按下。當K2鍵按下時啟動頻率測量,當待測頻率變化時單片機進行參數計算并通過P1口輸出合適的控制字,控制分頻電路和放大電路選擇對應的分頻比和放大倍數對信號進行相應的處理。當結束鍵K3按下時系統停止工作,否則重復前面的步驟。
當單片機測得信號的頻率在75kHz~10kHz之間時,信號將被400分頻后輸入頻率/電壓轉換電路,同時放大電路會選擇放大400倍的檔位;當測得信號的頻率在10kHz~4kHz之間時,信號將被40分頻后輸入頻率/電壓轉換電路,同時放大電路會選擇放大40倍的檔位;當測得信號的頻率在4kHz~250Hz之間時,信號將被4分頻后輸入頻率/電壓轉換電路,同時放大電路會選擇放大4倍的檔位;當測得信號的頻率小于250Hz時,待處理信號不分頻直接輸入頻率/電壓轉換電路,同時放大電路變成了電壓跟隨器,不對待處理信號進行放大。
?
3、實驗結果
3.1、低頻頻率/電壓轉換電路實測結果
在實驗中當信號頻率較低時,可將整形后的信號直接加入頻率電壓轉換電路,而不經過分頻電路。直接選取Rt=910Ω,RL=19kΩ,Rs=14.5kΩ,Ct=0.01μF,當輸入信號的頻率小于100kHz時,測得的實驗結果如表1所示。
3.2、寬頻頻率/電壓轉換電路實測結果
在實驗中,選取Rt=910Ω,RL=190Ω,Rs=14.5kΩ,Ct=0.01μF。當輸入信號頻率范圍在100kHz~30MHz之間時,測得的實驗結果如表2所示。
比較分析以上結果可知,利用分頻電路和放大電路可以實現基于LM331的頻率/電壓轉換電路頻率范圍的擴展,有效地解決了現有頻率/電壓轉換芯片轉換頻率不高的問題。但是該電路在信號頻率較小時,轉換后的電壓誤差較大,這可能是由于頻率/電壓變換系數較小的原因。
本文設計實現的基于LM331的寬頻頻率/電壓轉換電路利用由高速雙D型觸發器74ALS74、計數器74ALS168和數據選擇器74ALS153組成的分頻電路以及由運算放大器OP37、4雙向模擬開關CD4066和電阻網絡構成的放大電路對LM331的頻率/電壓轉換范圍進行了擴展。設計的寬頻頻率/電壓轉換電路所允許輸入信號頻率范圍為1kHz~30MHz,電路結構簡單,成本低,功耗小,可以應用于傳感器測量、電機的轉速測量、自適應信號處理等領域,具有良好的應用前景。
評論
查看更多