在前兩篇關于 Python 切片的文章中,我們學習了切片的基礎用法、高級用法、使用誤區,以及自定義對象如何實現切片用法(相關鏈接見文末)。本文是切片系列的第三篇,主要內容是迭代器切片。
迭代器是 Python 中獨特的一種高級特性,而切片也是一種高級特性,兩者相結合,會產生什么樣的結果呢?
1、迭代與迭代器
首先,有幾個基本概念要澄清:迭代、可迭代對象、迭代器。
迭代 是一種遍歷容器類型對象(例如字符串、列表、字典等等)的方式,例如,我們說迭代一個字符串“abc”,指的就是從左往右依次地、逐個地取出它的全部字符的過程。(PS:漢語中迭代一詞有循環反復、層層遞進的意思,但 Python 中此詞要理解成單向水平線性 的,如果你不熟悉它,我建議直接將其理解為遍歷。)
那么,怎么寫出迭代操作的指令呢?最通用的書寫語法就是 for 循環。
# for循環實現迭代過程 for char in "abc": print(char, end=" ") # 輸出結果:a b c
for 循環可以實現迭代的過程,但是,并非所有對象都可以用于 for 循環,例如,上例中若將字符串“abc”換成任意整型數字,則會報錯: 'int' object is not iterable .
這句報錯中的單詞“iterable”指的是“可迭代的”,即 int 類型不是可迭代的。而字符串(string)類型是可迭代的,同樣地,列表、元組、字典等類型,都是可迭代的。
那怎么判斷一個對象是否可迭代呢?為什么它們是可迭代的呢?怎么讓一個對象可迭代呢?
要使一個對象可迭代,就要實現可迭代協議,即要實現__iter__()魔術方法,換言之,只要實現了這個魔術方法的對象都是可迭代對象。
那怎么判斷一個對象是否實現了這個方法呢?除了上述的for循環外,我知道四種方法:
# 方法1:dir()查看__iter__ dir(2) # 沒有,略 dir("abc") # 有,略 # 方法2:isinstance()判斷 import collections isinstance(2, collections.Iterable) # False isinstance("abc", collections.Iterable) # True # 方法3:hasattr()判斷 hasattr(2,"__iter__") # False hasattr("abc","__iter__") # True # 方法4:用iter()查看是否報錯 iter(2) # 報錯:'int' object is not iterable iter("abc") #### PS:判斷是否可迭代,還可以查看是否實現__getitem__,為方便描述,本文從略。
這幾種方法中最值得一提的是 iter() 方法,它是 Python 的內置方法,其作用是將可迭代對象變成迭代器 。
這句話可以解析出兩層意思:
(1)可迭代對象跟迭代器是兩種東西;
(2)可迭代對象能變成迭代器。
實際上,迭代器必然是可迭代對象,但可迭代對象不一定是迭代器。兩者有多大的區別呢?
如上圖藍圈所示,普通可迭代對象與迭代器的最關鍵區別可概括為:一同兩不同 ,所謂“一同”,即兩者都是可迭代的(__iter__),所謂“兩不同”,即可迭代對象在轉化為迭代器后,它會丟失一些屬性(__getitem__),同時也增加一些屬性(__next__)。
首先看看增加的屬性 __next__ , 它是迭代器之所以是迭代器的關鍵,事實上,我們正是把同時實現了 __iter__ 方法 和 __next__ 方法的對象定義為迭代器的。
有了多出來的這個屬性,可迭代對象不需要借助外部的 for 循環語法,就能實現自我的迭代/遍歷過程。我發明了兩個概念來描述這兩種遍歷過程(PS:為了易理解,這里稱遍歷,實際也可稱為迭代):它遍歷 指的是通過外部語法而實現的遍歷,自遍歷 指的是通過自身方法實現的遍歷。
借助這兩個概念,我們說,可迭代對象就是能被“它遍歷”的對象,而迭代器是在此基礎上,還能做到“自遍歷”的對象。
ob1 = "abc" ob2 = iter("abc") ob3 = iter("abc") # ob1它遍歷 for i in ob1: print(i, end = " ") # a b c for i in ob1: print(i, end = " ") # a b c # ob1自遍歷 ob1.__next__() # 報錯: 'str' object has no attribute '__next__' # ob2它遍歷 for i in ob2: print(i, end = " ") # a b c for i in ob2: print(i, end = " ") # 無輸出 # ob2自遍歷 ob2.__next__() # 報錯:StopIteration # ob3自遍歷 ob3.__next__() # a ob3.__next__() # b ob3.__next__() # c ob3.__next__() # 報錯:StopIteration
通過上述例子可看出,迭代器的優勢在于支持自遍歷,同時,它的特點是單向非循環的,一旦完成遍歷,再次調用就會報錯。
對此,我想到一個比方:普通可迭代對象就像是子彈匣,它遍歷就是取出子彈,在完成操作后又裝回去,所以可以反復遍歷(即多次調用for循環,返回相同結果);而迭代器就像是裝載了子彈匣且不可拆卸的槍,進行它遍歷或者自遍歷都是發射子彈,這是消耗性的遍歷,是無法復用的(即遍歷會有盡頭)。
寫了這么多,稍微小結一下:迭代是一種遍歷元素的方式,按照實現方式劃分,有外部迭代與內部迭代兩種,支持外部迭代(它遍歷)的對象就是可迭代對象,而同時還支持內部迭代(自遍歷)的對象就是迭代器;按照消費方式劃分,可分為復用型迭代與一次性迭代,普通可迭代對象是復用型的,而迭代器是一次性的。
2、迭代器切片
前面提到了“一同兩不同”,最后的不同是,普通可迭代對象在轉化成迭代器的過程中會丟失一些屬性,其中關鍵的屬性是 __getitem__ 。在《Python進階:自定義對象實現切片功能》中,我曾介紹了這個魔術方法,并用它實現了自定義對象的切片特性。
那么問題來了:為啥迭代器不繼承這個屬性呢?
首先,迭代器使用的是消耗型的遍歷,這意味著它充滿不確定性,即其長度與索引鍵值對是動態衰減的,所以很難 get 到它的 item ,也就不再需要 __getitem__ 屬性了。其次,若強行給迭代器加上這個屬性,這并不合理,正所謂強扭的瓜不甜……
由此,新的問題來了:既然會丟失這么重要的屬性(還包括其它未標識的屬性),為什么還要使用迭代器呢?
這個問題的答案在于,迭代器擁有不可替代的強大的有用的功能,使得 Python 要如此設計它。限于篇幅,此處不再展開,后續我會專門填坑此話題。
還沒完,死纏爛打的問題來了:能否令迭代器擁有這個屬性呢,即令迭代器繼續支持切片呢?
hi = "歡迎關注公眾號:Python貓" it = iter(hi) # 普通切片 hi[-7:] # Python貓 # 反例:迭代器切片 it[-7:] # 報錯:'str_iterator' object is not subscriptable
迭代器因為缺少__getitem__ ,因此不能使用普通的切片語法。想要實現切片,無非兩種思路:一是自己造輪子,寫實現的邏輯;二是找到封裝好的輪子。
Python 的 itertools 模塊就是我們要找的輪子,用它提供的方法可輕松實現迭代器切片。
import itertools # 例1:簡易迭代器 s = iter("123456789") for x in itertools.islice(s, 2, 6): print(x, end = " ") # 輸出:3 4 5 6 for x in itertools.islice(s, 2, 6): print(x, end = " ") # 輸出:9 # 例2:斐波那契數列迭代器 class Fib(): def __init__(self): self.a, self.b = 1, 1 def __iter__(self): while True: yield self.a self.a, self.b = self.b, self.a + self.b f = iter(Fib()) for x in itertools.islice(f, 2, 6): print(x, end = " ") # 輸出:2 3 5 8 for x in itertools.islice(f, 2, 6): print(x, end = " ") # 輸出:34 55 89 14
itertools 模塊的 islice() 方法將迭代器與切片完美結合,終于回答了前面的問題。然而,迭代器切片跟普通切片相比,前者有很多局限性。首先,這個方法不是“純函數”(純函數需遵守“相同輸入得到相同輸出”的原則,之前在《來自Kenneth Reitz大神的建議:避免不必要的面向對象編程》提到過);其次,它只支持正向切片,且不支持負數索引,這都是由迭代器的損耗性所決定的。
那么,我不禁要問:itertools 模塊的切片方法用了什么實現邏輯呢?
下方是官網提供的源碼:
def islice(iterable, *args): # islice('ABCDEFG', 2) --> A B # islice('ABCDEFG', 2, 4) --> C D # islice('ABCDEFG', 2, None) --> C D E F G # islice('ABCDEFG', 0, None, 2) --> A C E G s = slice(*args) # 索引區間是[0,sys.maxsize],默認步長是1 start, stop, step = s.start or 0, s.stop or sys.maxsize, s.step or 1 it = iter(range(start, stop, step)) try: nexti = next(it) except StopIteration: # Consume *iterable* up to the *start* position. for i, element in zip(range(start), iterable): pass return try: for i, element in enumerate(iterable): if i == nexti: yield element nexti = next(it) except StopIteration: # Consume to *stop*. for i, element in zip(range(i + 1, stop), iterable): pass
islice() 方法的索引方向是受限的,但它也提供了一種可能性:即允許你對一個無窮的(在系統支持范圍內)迭代器進行切片的能力。這是迭代器切片最具想象力的用途場景。
除此之外,迭代器切片還有一個很實在的應用場景:讀取文件對象中給定行數范圍的數據。
在《給Python學習者的文件讀寫指南(含基礎與進階,建議收藏)》里,我介紹了從文件中讀取內容的幾種方法:readline() 比較雞肋,不咋用;read() 適合讀取內容較少的情況,或者是需要一次性處理全部內容的情況;而 readlines() 用的較多,每次迭代讀取內容,既減少內存壓力,又方便逐行對數據處理。
雖然 readlines() 有迭代讀取的優勢,但它是從頭到尾逐行讀取,若文件有幾千行,而我們只想要讀取少數特定行(例如第1000-1009行),那它還是效率太低了??紤]到文件對象天然就是迭代器 ,我們可以使用迭代器切片先行截取,然后再處理,如此效率將大大地提升。
# test.txt 文件內容 ''' 貓 Python貓 python is a cat. this is the end. ''' from itertools import islice with open('test.txt','r',encoding='utf-8') as f: print(hasattr(f, "__next__")) # 判斷是否迭代器 content = islice(f, 2, 4) for line in content: print(line.strip()) ### 輸出結果: True python is a cat. this is the end.
3、小結
好啦,今天的學習就到這,小結一下:迭代器是一種特殊的可迭代對象,可用于它遍歷與自遍歷,但遍歷過程是損耗型的,不具備循環復用性,因此,迭代器本身不支持切片操作;通過借助 itertools 模塊,我們能實現迭代器切片,將兩者的優勢相結合,其主要用途在于截取大型迭代器(如無限數列、超大文件等等)的片段,實現精準的處理,從而大大地提升性能與效率。
編輯:hfy
評論
查看更多