三種新的fd加入linux內核的的版本:
signalfd:2.6.22
eventfd:2.6.22
三種fd的意義:
lsignalfd
傳統的處理信號的方式是注冊信號處理函數;由于信號是異步發生的,要解決數據的并發訪問,可重入問題。signalfd可以將信號抽象為一個文件描述符,當有信號發生時可以對其read,這樣可以將信號的監聽放到select、poll、epoll等監聽隊列中。
ltimerfd
可以實現定時器的功能,將定時器抽象為文件描述符,當定時器到期時可以對其read,這樣也可以放到監聽隊列的主循環中。
leventfd
實現了線程之間事件通知的方式,也可以用于用戶態和內核通信。eventfd的緩沖區大小是sizeof(uint64_t);向其write可以遞增這個計數器,read操作可以讀取,并進行清零;eventfd也可以放到監聽隊列中,當計數器不是0時,有可讀事件發生,可以進行讀取。
三種新的fd都可以進行監聽,當有事件觸發時,有可讀事件發生。
signalfd涉及API:
點擊(此處)折疊或打開
#include int signalfd(int fd, const sigset_t *mask, int flags);
1
2
#include
int signalfd(int fd, const sigset_t *mask, int flags);
參數fd:如果是-1則表示新建一個,如果是一個已經存在的則表示修改signalfd所關聯的信號;
參數mask:信號集合;
參數flag:內核版本2.6.27以后支持SFD_NONBLOCK、SFD_CLOEXEC;
成功返回文件描述符,返回的fd支持以下操作:read、select(poll、epoll)、close
l例子
#include #include #include #include #include #define handle_error(msg) \ do { perror(msg); exit(EXIT_FAILURE); } while (0) int main(int argc, char *argv[]) { sigset_t mask; int sfd; struct signalfd_siginfo fdsi; ssize_t s; sigemptyset(&mask); sigaddset(&mask, SIGINT); sigaddset(&mask, SIGQUIT); if (sigprocmask(SIG_BLOCK, &mask, NULL) == -1) handle_error("sigprocmask"); sfd = signalfd(-1, &mask, 0); if (sfd == -1) handle_error("signalfd"); for (;;) { s = read(sfd, &fdsi, sizeof(struct signalfd_siginfo)); if (s != sizeof(struct signalfd_siginfo)) handle_error("read"); if (fdsi.ssi_signo == SIGINT) { printf("Got SIGINT\n"); } else if (fdsi.ssi_signo == SIGQUIT) { printf("Got SIGQUIT\n"); exit(EXIT_SUCCESS); } else { printf("Read unexpected signal\n"); } } }
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
#include
#include
#include
#include
#include
#define handle_error(msg) \
do { perror(msg); exit(EXIT_FAILURE); } while (0)
int main(int argc, char *argv[])
{
sigset_t mask;
int sfd;
struct signalfd_siginfo fdsi;
ssize_t s;
sigemptyset(&mask);
sigaddset(&mask, SIGINT);
sigaddset(&mask, SIGQUIT);
if (sigprocmask(SIG_BLOCK, &mask, NULL) == -1)
handle_error("sigprocmask");
sfd = signalfd(-1, &mask, 0);
if (sfd == -1)
handle_error("signalfd");
for (;;) {
s = read(sfd, &fdsi, sizeof(struct signalfd_siginfo));
if (s != sizeof(struct signalfd_siginfo))
handle_error("read");
if (fdsi.ssi_signo == SIGINT) {
printf("Got SIGINT\n");
} else if (fdsi.ssi_signo == SIGQUIT) {
printf("Got SIGQUIT\n");
exit(EXIT_SUCCESS);
} else {
printf("Read unexpected signal\n");
}
}
}
L17-L21:將感興趣的信號加入到sigset_t中;
L24:調用signalfd,把信號集與fd關聯起來,第一個參數為-1表示新建一個signalfd,不是-1并且是一個合法的signalfd表示向其添加新的信號。
L29:阻塞等待信號的發生并讀取。根據讀取的結果可以知道發生了什么信號。
timerfd涉及的API
#include int timerfd_create(int clockid, int flags); int timerfd_settime(int fd, int flags, const struct itimerspec *new_value,struct itimerspec *old_value); int timerfd_gettime(int fd, struct itimerspec *curr_value);
1
2
3
4
#include
int timerfd_create(int clockid, int flags);
int timerfd_settime(int fd, int flags, const struct itimerspec *new_value,struct itimerspec *old_value);
int timerfd_gettime(int fd, struct itimerspec *curr_value);
timerfd_create:創建一個timerfd;返回的fd可以進行如下操作:read、select(poll、epoll)、close
timerfd_settime:設置timer的周期,以及起始間隔
timerfd_gettime:獲取到期時間。
//函數參數中數據結構如下: struct timespec { time_t tv_sec; /* Seconds */ long tv_nsec; /* Nanoseconds */ }; struct itimerspec { struct timespec it_interval; /* Interval for periodic timer */ struct timespec it_value; /* Initial expiration */ };
1
2
3
4
5
6
7
8
9
10
11
//函數參數中數據結構如下:
struct timespec
{
time_t tv_sec; /* Seconds */
long tv_nsec; /* Nanoseconds */
};
struct itimerspec
{
struct timespec it_interval; /* Interval for periodic timer */
struct timespec it_value; /* Initial expiration */
};
l例子
#include #include #include #include #include #include #include /* Definition of uint64_t */ #define handle_error(msg) \ do { perror(msg); exit(EXIT_FAILURE); } while (0) void printTime() { struct timeval tv; gettimeofday(&tv, NULL); printf("printTime: current time:%ld.%ld ", tv.tv_sec, tv.tv_usec); } int main(int argc, char *argv[]) { struct timespec now; if (clock_gettime(CLOCK_REALTIME, &now) == -1) handle_error("clock_gettime"); struct itimerspec new_value; new_value.it_value.tv_sec = now.tv_sec + atoi(argv[1]); new_value.it_value.tv_nsec = now.tv_nsec; new_value.it_interval.tv_sec = atoi(argv[2]); new_value.it_interval.tv_nsec = 0; int fd = timerfd_create(CLOCK_REALTIME, 0); if (fd == -1) handle_error("timerfd_create"); if (timerfd_settime(fd, TFD_TIMER_ABSTIME, &new_value, NULL) == -1) handle_error("timerfd_settime"); printTime(); printf("timer started\n"); for (uint64_t tot_exp = 0; tot_exp < atoi(argv[3]);) { uint64_t exp; ssize_t s = read(fd, &exp, sizeof(uint64_t)); if (s != sizeof(uint64_t)) handle_error("read"); tot_exp += exp; printTime(); printf("read: %llu; total=%llu\n",exp, tot_exp); } exit(EXIT_SUCCESS); }
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
#include
#include
#include
#include
#include
#include
#include /* Definition of uint64_t */
#define handle_error(msg) \
do { perror(msg); exit(EXIT_FAILURE); } while (0)
void printTime()
{
struct timeval tv;
gettimeofday(&tv, NULL);
printf("printTime: current time:%ld.%ld ", tv.tv_sec, tv.tv_usec);
}
int main(int argc, char *argv[])
{
struct timespec now;
if (clock_gettime(CLOCK_REALTIME, &now) == -1)
handle_error("clock_gettime");
struct itimerspec new_value;
new_value.it_value.tv_sec = now.tv_sec + atoi(argv[1]);
new_value.it_value.tv_nsec = now.tv_nsec;
new_value.it_interval.tv_sec = atoi(argv[2]);
new_value.it_interval.tv_nsec = 0;
int fd = timerfd_create(CLOCK_REALTIME, 0);
if (fd == -1)
handle_error("timerfd_create");
if (timerfd_settime(fd, TFD_TIMER_ABSTIME, &new_value, NULL) == -1)
handle_error("timerfd_settime");
printTime();
printf("timer started\n");
for (uint64_t tot_exp = 0; tot_exp < atoi(argv[3]);)
{
uint64_t exp;
ssize_t s = read(fd, &exp, sizeof(uint64_t));
if (s != sizeof(uint64_t))
handle_error("read");
tot_exp += exp;
printTime();
printf("read: %llu; total=%llu\n",exp, tot_exp);
}
exit(EXIT_SUCCESS);
}
代碼L25-L29:初始化定時器的參數,初始間隔與定時間隔。
L32:創建定時器fd,CLOCK_REALTIME:真實時間類型,修改時鐘會影響定時器;CLOCK_MONOTONIC:相對時間類型,修改時鐘不影響定時器。
L35:設置定時器的值。
L44:阻塞等待定時器到期。返回值是未處理的到期次數。比如定時間隔為2秒,但過了10秒才去讀取,則讀取的值是5。
編譯運行:編譯時要加rt庫(g++ -lrt timerfd.cc -o timerfd)
[root@localhost appTest]# ./timerfd 5 2 10
printTime: current time:1357391736.146196 timer started
printTime: current time:1357391741.153430 read: 1; total=1
printTime: current time:1357391743.146550 read: 1; total=2
printTime: current time:1357391745.151483 read: 1; total=3
printTime: current time:1357391747.161155 read: 1; total=4
printTime: current time:1357391749.153934 read: 1; total=5
printTime: current time:1357391751.157309 read: 1; total=6
printTime: current time:1357391753.158384 read: 1; total=7
printTime: current time:1357391755.150470 read: 1; total=8
printTime: current time:1357391757.150253 read: 1; total=9
printTime: current time:1357391759.149954 read: 1; total=10
[root@localhost appTest]#
第一個參數5為第一次定時器到期間隔,第二個參數2為定時器的間隔,第三個參數為定時器到期10次則退出。程序運行(5+2*10)S退出。
詳細信息可以:man timerfd_create
eventfd涉及API:
#include int eventfd(unsigned int initval, int flags);
1
2
#include
int eventfd(unsigned int initval, int flags);
創建一個eventfd,這是一個計數器相關的fd,計數器不為零是有可讀事件發生,read以后計數器清零,write遞增計數器;返回的fd可以進行如下操作:read、write、select(poll、epoll)、close。
這個函數會創建一個事件對象 (eventfd object), 用來實現,進程(線程)間的等待/通知(wait/notify) 機制. 內核會為這個對象維護一個64位的計數器(uint64_t)。并且使用第一個參數(initval)初始化這個計數器。調用這個函數就會返回一個新的文件描述符(event object)。2.6.27版本開始可以按位設置第二個參數(flags)。有如下的一些宏可以使用:
lEFD_NONBLOCK
功能同open(2)的O_NONBLOCK,設置對象為非阻塞狀態,如果沒有設置這個狀態的話,read(2)讀eventfd,并且計數器的值為0 就一直堵塞在read調用當中,要是設置了這個標志, 就會返回一個 EAGAIN 錯誤(errno = EAGAIN)。效果也如同 額外調用select(2)達到的效果。
lEFD_CLOEXEC
這個標識被設置的話,調用exec后會自動關閉文件描述符,防止泄漏。如果是2.6.26或之前版本的內核,flags 必須設置為0。
創建這個對象后,可以對其做如下操作:
1)write:將緩沖區寫入的8字節整形值加到內核計數器上。
2)read:讀取8字節值, 并把計數器重設為0. 如果調用read的時候計數器為0, 要是eventfd是阻塞的, read就一直阻塞在這里,否則就得到 一個EAGAIN錯誤。如果buffer的長度小于8那么read會失敗, 錯誤代碼被設置成 EINVAL。
3)poll select epoll
4)close:當不需要eventfd的時候可以調用close關閉, 當這個對象的所有句柄都被關閉的時候,內核會釋放資源。 為什么不是close就直接釋放呢, 如果調用fork 創建
進程的時候會復制這個句柄到新的進程,并繼承所有的狀態。
l例子
#include #include #include #include #include #include #define handle_error(msg) \ do { perror(msg); exit(1); } while (0)int main( int argc, char **argv ){ uint64_t u; ssize_t s;5 int j; if ( argc < 2 ) { fprintf(stderr, "input in command argument"); exit(1); } int efd; if ( (efd = eventfd(0, EFD_NONBLOCK)) == -1 ) handle_error("eventfd failed"); switch (fork()) { case 0: for( j = 1; j < argc; j ++ ) { printf("Child writing %s to efd\n", argv[j] ); u = strtoull(argv[j], NULL, 0); /* analogesly atoi */ s = write(efd, &u, sizeof(uint64_t));/*append u to counter */ if ( s != sizeof(uint64_t) ) handle_error("write efd failed"); } printf("child completed write loop\n"); exit(0); default: sleep (2); printf("parent about to read\n"); s = read(efd, &u, sizeof(uint64_t)); if ( s != sizeof(uint64_t) ) { if (errno = EAGAIN) { printf("Parent read value %d\n", s); return 1; } handle_error("parent read failed"); } printf("parent read %d , %llu (0x%llx) from efd\n", s, (unsigned long long)u, (unsigned long long) u); exit(0); case -1: handle_error("fork "); } return 0;}
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
#include
#include
#include
#include
#include
#include
#define handle_error(msg) \
do { perror(msg); exit(1); } while (0)
int main( int argc, char **argv ){
uint64_t u;
ssize_t s;5 int j;
if ( argc < 2 ) {
fprintf(stderr, "input in command argument");
exit(1);
}
int efd;
if ( (efd = eventfd(0, EFD_NONBLOCK)) == -1 )
handle_error("eventfd failed");
switch (fork()) {
case 0:
for( j = 1; j < argc; j ++ ) {
printf("Child writing %s to efd\n", argv[j] );
u = strtoull(argv[j], NULL, 0); /* analogesly atoi */
s = write(efd, &u, sizeof(uint64_t));/*append u to counter */
if ( s != sizeof(uint64_t) )
handle_error("write efd failed");
}
printf("child completed write loop\n");
exit(0);
default:
sleep (2);
printf("parent about to read\n");
s = read(efd, &u, sizeof(uint64_t));
if ( s != sizeof(uint64_t) ) {
if (errno = EAGAIN) {
printf("Parent read value %d\n", s);
return 1;
}
handle_error("parent read failed");
}
printf("parent read %d , %llu (0x%llx) from efd\n",
s, (unsigned long long)u, (unsigned long long) u);
exit(0);
case -1:
handle_error("fork ");
}
return 0;
}
?
評論
查看更多