神經網絡包括現代深度構架重要的一部分是反向傳播算法的錯誤,使用離輸入更近的神經元通過網絡更新權重。非常坦率的說,這就是神經網絡繼承他們”力量“(缺乏更好的術語)的地方。反向傳播和一個隨后分布式的最小化權重的優化方法,為了最小化損失函數。在深度學習中一個常見的優化方法是梯度下降。
2018-12-14 16:01:4419377 深度學習的核心就是"深度" ,從實現上深度學習神經網絡就是一種包括多個隱含層的多層感知機,它通過組合低層特征,形成更為抽象的高層表示,用以描述被識別對象的高級屬性類別或特征,深度學習的“深”就是指層數多。
2022-11-11 10:09:45647 深度學習這幾年特別火,就像5年前的大數據一樣,不過深度學習其主要還是屬于機器學習的范疇領域內,所以這篇文章里面我們來嘮一嘮機器學習和深度學習的算法流程區別。
2023-09-06 12:48:401177 問一下,怎么對csv文件進行概率密度函數和累積分布函數。
2014-02-27 22:19:19
一:深度學習DeepLearning實戰時間地點:1 月 15日— 1 月18 日二:深度強化學習核心技術實戰時間地點: 1 月 27 日— 1 月30 日(第一天報到 授課三天;提前環境部署 電腦
2021-01-09 17:01:54
深度學習的概念源于人工神經網絡的研究。含多隱層的多層感知器就是一種深度學習結構。深度學習通過組合低層特征形成更加抽象的高層表示屬性類別或特征,以發現數據的分布式特征表示?;逎y懂的概念,略微有些難以
2018-07-04 16:07:53
深度學習中的圖片增強
2020-05-28 07:03:11
在進行數據挖掘或者機器學習模型建立的時候,因為在統計學習中,假設數據滿足獨立同分布(i.i.d,independently and identically distributed),即當前已產生
2021-01-28 06:57:47
在未來的某個時候,人們必定能夠相對自如地運用人工智能,安全地駕車出行。這個時刻何時到來我無法預見;但我相信,彼時“智能”會顯現出更“切實”的意義。與此同時,通過深度學習方法,人工智能的實際應用能夠在
2022-11-11 07:55:50
利用ML構建無線環境地圖及其在無線通信中的應用?使用深度學習的收發機設計和信道解碼基于ML的混合學習方法,用于信道估計、建模、預測和壓縮 使用自動編碼器等ML技術的端到端通信?無線電資源管理深度強化學習
2021-07-01 10:49:03
未來的某個時候,人們必定能夠相對自如地運用人工智能,安全地駕車出行。這個時刻何時到來我無法預見;但我相信,彼時“智能”會顯現出更“切實”的意義。與此同時,通過深度學習方法,人工智能的實際應用能夠在汽車
2019-03-13 06:45:03
深度學習在預測和健康管理中的應用綜述摘要深度學習對預測和健康管理(PHM)引起了濃厚的興趣,因為它具有強大的表示能力,自動化的功能學習能力以及解決復雜問題的一流性能。本文調查了使用深度學習在PHM
2021-07-12 06:46:47
深度學習常用模型有哪些?深度學習常用軟件工具及平臺有哪些?深度學習存在哪些問題?
2021-10-14 08:20:47
創客們的最酷“玩具” 智能無人機、自主機器人、智能攝像機、自動駕駛……今年最令硬件創客們著迷的詞匯,想必就是這些一線“網紅”了。而這些網紅的背后,幾乎都和計算機視覺與深度學習密切相關?! ?b class="flag-6" style="color: red">深度學習
2021-07-19 06:17:28
CPU優化深度學習框架和函數庫機器學***器
2021-02-22 06:01:02
具有深度學習模型的嵌入式系統應用程序帶來了巨大的好處。深度學習嵌入式系統已經改變了各個行業的企業和組織。深度學習模型可以幫助實現工業流程自動化,進行實時分析以做出決策,甚至可以預測預警。這些AI
2021-10-27 06:34:15
深度學習如何改進(一)
2019-07-01 16:46:00
深度學習進程
2020-06-14 16:48:46
筆記一天搞懂深度學習
2019-05-27 15:02:46
一:深度學習DeepLearning實戰時間地點:1 月 15日— 1 月18 日二:深度強化學習核心技術實戰時間地點: 1 月 27 日— 1 月30 日(第一天報到 授課三天;提前環境部署 電腦
2021-01-10 13:42:26
學習,也就是現在最流行的深度學習領域,關注論壇的朋友應該看到了,開發板試用活動中有【NanoPi K1 Plus試用】的申請,介紹中NanopiK1plus的高大上優點之一就是“可運行深度學習算法的智能
2018-06-04 22:32:12
算法工程師修仙之路:Python深度學習(八)
2019-04-02 13:03:48
當Spark遇上TensorFlow分布式深度學習框架原理和實踐
2019-09-09 08:46:51
。由于深度學習需要使用海量數據來進行業務訓練,因此計算資源需求很大,動則幾十上百個GPU,甚至上千GPU等等;同時訓練時間也很長,每次訓練都是以天、周或甚至月年為單位。但是,開源的分布式訓練框架,在保證
2018-08-02 20:44:09
深度學習是什么意思
2020-11-11 06:58:03
什么是深度學習為了解釋深度學習,有必要了解神經網絡。神經網絡是一種模擬人腦的神經元和神經網絡的計算模型。作為具體示例,讓我們考慮一個輸入圖像并識別圖像中對象類別的示例。這個例子對應機器學習中的分類
2023-02-17 16:56:59
可以實現任意概率分布和數據范圍的程序,特共享一下,希望對各位有所幫助!現在你們不應該對一些商家的抽獎活動表示幻想了吧。。。都控制了概率的 大概會中大獎的號碼都在內部人員手里 哈哈
2012-12-06 17:01:42
MATLAB支持的模型有哪些呢?如何使用MATLAB幫助相關人員執行深度學習任務呢?
2021-11-22 07:48:19
下面來探討一下深度學習在嵌入式設備上的應用,具體如下:1、深度學習的概念源于人工神經網絡的研究,包含多個隱層的多層感知器(MLP) 是一種原始的深度學習結構。深度學習通過組合低層特征形成更加抽象
2021-10-27 08:02:31
機器學習:偏差、方差,生成模型,判別模型,先驗概率,后驗概率
2020-05-14 15:23:39
神經網絡和深度學習的概念,但為了完整起見,我們將在這里介紹基礎知識,并探討 TensorFlow 的哪些特性使其成為深度學習的熱門選擇。神經網絡是一個生物啟發式的計算和學習模型。像生物神經元一樣,它們從其他
2020-07-28 14:34:04
怎樣從傳統機器學習方法過渡到深度學習?
2021-10-14 06:51:23
請問一下什么是深度學習?
2021-08-30 07:35:21
一種基帶GMSK信號相關器及其輸出概率分布該文提出一種基帶GMSK 信號相關器,并從GMSK 解調信號的相位概率分布函數以及獨立同分布隨機變量和的概率分布函數出發,給出了該
2009-10-28 23:33:2214 模2n加整體逼近模2 加產生的噪聲函數的概率分布研究:該文證明了模2n 加變換以6 種不同的方式整體逼近模2 加時產生的噪聲函數取值概率的數值分布相同,給出了6 種噪聲函數的概率
2009-10-29 13:10:2620 在使用隨機射線方法建模無線傳播信道時,需要求解以反射次數為指標的無線電波經過若干次反射以后達到特定位置的概率分布。該文使用信息論中的最大熵原理,首先計算在Manhatta
2009-11-17 14:05:538 《概率論與數理統計》優秀學習資料,概率論與數理統計學習資料隨機試驗、樣本空間與隨機事件(1)隨機試驗:具有以下三個特點的試驗稱為隨機試驗,記為E.1) 試驗可
2010-02-13 11:40:220 基于輸出功率概率分布優化3G手機功率放大器設計
2016-01-06 17:33:170 為幫助數據科學家和開發人員充分利用深度學習領域中的機遇,NVIDIA為其深度學習軟件平臺發布了三項重大更新,它們分別是NVIDIA DIGITS 4、CUDA深度神經網絡庫(cuDNN)5.1和全新的GPU推理引擎(GIE)?! ?
NVIDIA深度學習軟件平臺推三項重大更新
2016-08-06 15:00:261806 計及節點相關性的含間歇分布式電源配電網概率潮流_劉洪
2017-01-04 16:32:501 光伏發電出力的可預測性較低,相比點預測而言,光伏發電出力的概率性預測能夠提供更多的信息,有利于電力系統的安全經濟運行。提出了一種基于 Copula 理論的光伏發電出力的條件預測誤差分布估計方法。采用
2017-10-01 11:22:3915 深度學習與傳統的機器學習最主要的區別在于隨著數據規模的增加其性能也不斷增長。當數據很少時,深度學習算法的性能并不好。這是因為深度學習算法需要大量的數據來完美地理解它。另一方面,在這種情況下,傳統的機器學習算法使用制定的規則,性能會比較好。
2017-10-27 16:50:181719 機器學習和深度學習變得越來越火。突然之間,不管是了解的還是不了解的,所有人都在談論機器學習和深度學習。無論你是否主動關注過數據科學,你應該已經聽說過這兩個名詞了。如果你想讓自己弄清楚機器學習和深度學習的區別,請閱讀本篇文章,我將用通俗易懂的語言為你介紹他們之間的差別。
2017-11-16 01:38:062821 降維是大數據分析和可視化領域中的核心問題,其中基于概率分布模型的降維算法通過最優化高維數據模型和低維數據模型之間的代價函數來實現降維。這種策略的核心在于構建最能體現數據特征的概率分布模型。基于此
2017-11-24 17:13:592 統計概念其實容易理解多了。 我舉一個例子,什么是泊松分布和指數分布?恐怕大多數人都說不清楚。 我可以在10分鐘內,讓你毫不費力地理解這兩個概念。一句話總結:泊松分布是單位時間內獨立事件發生次數的概率分布,指數分布是獨立事件的時間間隔的概率分布。
2017-11-29 03:44:034207 深度學習本質上是深層的人工神經網絡,它不是一項孤立的技術,而是數學、統計機器學習、計算機科學和人工神經網絡等多個領域的綜合 。深度學習的理解,離不開本科數學中最為基礎的數學分析(高等數學)、線性代數、概率論和凸優化;深度學習技術的掌握,更離不開以編程為核心的動手實踐。
2017-12-26 12:15:0013663 針對原有集成學習多樣性不足而導致的集成效果不夠顯著的問題,提出一種基于概率校準的集成學習方法以及兩種降低多重共線性影響的方法。首先,通過使用不同的概率校準方法對原始分類器給出的概率進行校準;然后
2017-12-22 11:02:000 regression neural network,QRNN)和核密度估計(kernel density estimator,KDE)的光伏出力概率分布估計方法,構造出未來ld任意時刻的光伏出力概率密度函數
2018-01-09 15:07:473 串擾是電氣、電子系統內部多導體傳輸線間的相互電磁干擾,受其影響系統可靠性往往較差。電纜線束作為典型的多導體傳輸線,其串擾問題顯得尤為突出。針對電纜線束內導線位置的不確定性,提出一種線束內串擾概率分布
2018-02-12 15:37:512 如何描述風電功率波動的概率密度分布特性一直是風電聯網運行分析領域的難點。在利用概率密度函數法分析風電功率波動特性的基礎上,首先驗證了采用多種單一分布函數模型擬合風電波動概率密度分布特性的效果較差
2018-02-27 16:32:3912 下電網頻率仍然會保持相對穩定,并形成一個概率分布。 搭建了電網頻率測量平臺,分別在湖北和貴州兩地測得電網頻率數據。實測結果表明,這兩地的電網頻率分布形狀相近,與現有研究得出的結論有一定差異。這種電網頻率分布的
2018-04-17 11:35:184 近年來,深度學習作為機器學習中比較火的一種方法出現在我們面前,但是和非深度學習的機器學習相比(我將深度學習歸于機器學習的領域內),還存在著幾點很大的不同,具體來說,有以下幾點.
2018-05-02 10:30:004135 本深度學習是什么?了解深度學習難嗎?讓你快速了解深度學習的視頻講解本文檔視頻讓你4分鐘快速了解深度學習
深度學習的概念源于人工智能的人工神經網絡的研究。含多隱層的多層感知器就是一種深度學習結構。深度學習通過組合低層特征形成更加抽象的高層表示屬性類別或特征,以發現數據的分布式特征表示。
2018-08-23 14:36:1616 深度學習的概念源于人工神經網絡的研究。含多隱層的多層感知器就是一種深度學習結構。深度學習通過組合低層特征形成更加抽象的高層表示屬性類別或特征,以發現數據的分布式特征表示。
2018-10-07 15:19:0011903 深度學習到底有多熱,這里我就不再強調了,也因此有很多人關心這樣的幾個問題,“適不適合轉行深度學習(機器學習)”,“怎么樣轉行深度學習(機器學習)”,“轉行深度學習需要哪些入門材料?”等等。
2018-10-19 14:07:192467 上圖中的每種分布都包含相應的概率質量函數或概率密度函數。本文只涉及結果為單個數字的分布,所以橫軸均為可能的數值結果的集合??v軸描述了結果概率。有些分布是離散的,例如,結果為0到5之間的整數,其概率
2018-10-26 09:20:4311147 該視頻概述了Apache Spark *的BigDL分布式深度學習框架。
2018-10-30 06:41:002946 學習使用neon?在本地實施深度學習模型
2018-11-05 06:46:002227 Uber上個月加入了Linux基金會,并加入了AT&T和諾基亞等其他科技公司的行列,支持LF深度學習基金會的開源項目。LF深度學習基金會成立于3月,旨在支持針對深度學習和機器學習的開源項目,是Linux基金會的一部分。
2018-12-19 15:50:544882 我們將重點關注在預測已知未知數的領域模型的概率推斷。我們將演示貝葉斯校準的能力,其中裂縫傳播問題被公式化為基于物理的概率推理模型。
2019-01-03 10:33:482756 本文檔的詳細介紹的是快速了解神經網絡與深度學習的教程資料免費下載主要內容包括了:機器學習概述,線性模型,前饋神經網絡,卷積神經網絡,循環神經網絡,網絡優化與正則化,記憶與注意力機制,無監督學習,概率圖模型,玻爾茲曼機,深度信念網絡,深度生成模型,深度強化學習
2019-02-11 08:00:0025 本文從硬件加速的視角考察深度學習與FPGA,指出有哪些趨勢和創新使得這些技術相互匹配,并激發對FPGA如何幫助深度學習領域發展的探討。
2019-06-28 17:31:466527 本文檔的主要內容詳細介紹的是概率論與數理統計的學習課件合集免費下載包括了:第一章 概率論的基本概念,第二章 隨機變量及其分布,第三章 多維隨機變量及其分布,第四章 隨機變量的數字特征,第五章 大數定律及中心極限定理,第六章 樣本及抽樣分布,第七章 參數估計,第八章 假設檢驗
2020-05-21 08:00:005 深度學習是機器學習與神經網絡、人工智能、圖形化建模、優化、模式識別和信號處理等技術融合后產生的一個領域。
2020-11-05 09:31:194710 不像在機器學習系統中,人類需要根據數據類型(例如,像素值、形狀、方向)識別和手工編碼應用的特征,深度學習系統會試圖在不需要額外人工干預的情況下學習這些特征。以人臉識別程序為例,程序首先學習檢測和識別
2021-03-01 11:44:351629 深度學習算法現在是圖像處理軟件庫的組成部分。在他們的幫助下,可以學習和訓練復雜的功能;但他們的應用也不是萬能的。 “機器學習”和“深度學習”有什么區別? 在機器視覺和深度學習中,人類視覺的力量和對視
2021-03-12 16:11:007759 。然而,標記分布學習有時會面臨標記數據不足和注釋成本太高的困境。基于邊際概率分布匹配的主動標記分布學習( Active Label distributionLearning Based
2021-05-07 14:50:427 。然而,標記分布學習有時會面臨標記數據不足和注釋成本太高的困境。基于邊際概率分布匹配的主動標記分布學習( Active Label distributionLearning Based
2021-05-07 14:50:427 基于概率分布函數的流程工廠模型拓撲相似度計算
2021-06-25 11:48:435 下面來探討一下深度學習在嵌入式設備上的應用,具體如下:1、深度學習的概念源于人工神經網絡的研究,包含多個隱層的多層感知器(MLP) 是一種原始的深度學習結構。深度學習通過組合低層特征形成更加抽象
2021-10-20 17:51:051 ? 本文將帶您了解深度學習的工作原理與相關案例。 什么是深度學習? 深度學習是機器學習的一個子集,與眾不同之處在于,DL 算法可以自動從圖像、視頻或文本等數據中學習表征,無需引入人類領域的知識。深度
2022-04-01 10:34:108684 AI在汽車中的應用:實用深度學習
2022-11-01 08:26:190 GPU 引領的深度學習
2023-01-04 11:17:16477 人工智能的概念在1956年就被提出,如今終于走入現實,離不開一種名為“深度學習”的技術。深度學習的運作模式,如同一場傳話游戲。給神經網絡輸入數據,對數據的特征進行描述,在神經網絡中層層傳遞,最終
2023-01-14 23:34:43588 這是新的系列教程,在本教程中,我們將介紹使用 FPGA 實現深度學習的技術,深度學習是近年來人工智能領域的熱門話題。
2023-03-03 09:52:131088 智造之眼?科學設計深度學習各應用流程,在盡量簡化前期準備工作的基礎上為客戶提供穩定且準確的深度學習解決方案。
2023-05-04 16:55:52424 可擴展且保密的深度學習
2023-06-28 16:09:14194 深度學習和神經網絡的區別在于隱藏層的深度。一般來說,神經網絡的隱藏層要比實現深度學習的系統淺得多,而深度學習的在隱藏層可以有很多層。
2023-07-28 10:44:27296 深度學習的七種策略 深度學習已經成為了人工智能領域的熱門話題,它能夠幫助人們更好地理解和處理自然語言、圖形圖像、語音等各種數據。然而,要想獲得最好的效果,只是使用深度學習技術不夠。要獲得最好的結果
2023-08-17 16:02:531166 深度學習算法簡介 深度學習算法是什么?深度學習算法有哪些?? 作為一種現代化、前沿化的技術,深度學習已經在很多領域得到了廣泛的應用,其能夠不斷地從數據中提取最基本的特征,從而對大量的信息進行機器學習
2023-08-17 16:02:565995 深度學習是什么領域? 深度學習是機器學習的一種子集,由多層神經網絡組成。它是一種自動學習技術,可以從數據中學習高層次的抽象模型,以進行推斷和預測。深度學習廣泛應用于計算機視覺、語音識別、自然語言處理
2023-08-17 16:02:59985 ,如醫療、金融、自然語言處理、智能交通等等。 作為深度學習算法工程師,他們需要具備一定的技能和知識,包括數學基礎(如線性代數、微積分、概率論等)、編程語言(如Python、C++、Matlab等)、機器學習算法、深度學習算法(如神
2023-08-17 16:03:01723 什么是深度學習算法?深度學習算法的應用 深度學習算法被認為是人工智能的核心,它是一種模仿人類大腦神經元的計算模型。深度學習是機器學習的一種變體,主要通過變換各種架構來對大量數據進行學習以及分類處理
2023-08-17 16:03:041300 深度學習框架是什么?深度學習框架有哪些?? 深度學習框架是一種軟件工具,它可以幫助開發者輕松快速地構建和訓練深度神經網絡模型。與手動編寫代碼相比,深度學習框架可以大大減少開發和調試的時間和精力,并提
2023-08-17 16:03:091585 深度學習框架的作用是什么 深度學習是一種計算機技術,它利用人工神經網絡來模擬人類的學習過程。由于其高度的精確性和精度,深度學習已成為現代計算機科學領域的重要工具。然而,要在深度學習中實現高度復雜
2023-08-17 16:10:571070 深度學習算法庫框架學習 深度學習是一種非常強大的機器學習方法,它可以用于許多不同的應用程序,例如計算機視覺、語言處理和自然語言處理。然而,實現深度學習技術需要使用一些算法庫框架。在本文中,我們將探討
2023-08-17 16:11:07411 深度學習框架連接技術 深度學習框架是一個能夠幫助機器學習和人工智能開發人員輕松進行模型訓練、優化及評估的軟件庫。深度學習框架連接技術則是需要使用深度學習模型的應用程序必不可少的技術,通過連接技術
2023-08-17 16:11:16443 深度學習框架和深度學習算法教程 深度學習是機器學習領域中的一個重要分支,多年來深度學習一直在各個領域的應用中發揮著極其重要的作用,成為了人工智能技術的重要組成部分。許多深度學習算法和框架提供
2023-08-17 16:11:26637 深度學習服務器怎么做 深度學習服務器diy 深度學習服務器主板用什么? 隨著人工智能的飛速發展,越來越多的人開始投身于深度學習領域。但是,隨著深度學習的算法越來越復雜,需要更大的計算能力才能運行
2023-08-17 16:11:29489 機器學習和深度學習的區別 隨著人工智能技術的不斷發展,機器學習和深度學習已經成為大家熟知的兩個術語。雖然它們都屬于人工智能技術的研究領域,但它們之間有很大的差異。本文將詳細介紹機器學習和深度學習
2023-08-17 16:11:402724 機器學習和深度學習是當今最流行的人工智能(AI)技術之一。這兩種技術都有助于在不需要人類干預的情況下讓計算機自主學習和改進預測模型。本文將探討機器學習和深度學習的概念以及二者之間的區別。
2023-08-28 17:31:09885 深度學習作為機器學習的一個分支,其學習方法可以分為監督學習和無監督學習。兩種方法都具有其獨特的學習模型:多層感知機 、卷積神經網絡等屬于監 督學習;深度置信網 、自動編碼器 、去噪自動編碼器 、稀疏編碼等屬于無監督學習。
2023-10-09 10:23:42301 一、引言 隨著深度學習技術的快速發展,其在語音識別領域的應用也日益廣泛。深度學習技術可以有效地提高語音識別的精度和效率,并且被廣泛應用于各種應用場景。本文將探討深度學習在語音識別中的應用及所面臨
2023-10-10 18:14:53444 數可以用一個數字表示。或者籃子里有多少蘋果仍然是可數的。 連續隨機變量 這些是不能以離散方式表示的值。例如,一個人可能有 1.7 米高,1米 80 厘米,1.6666666...米高等等。 2. 密度函數 我們使用密度函數來描述隨機變量 的概率分布。 PMF:概率質量函
2023-11-03 10:46:25233 1 Introduction 基于深度學習的人工智能模型往往精于 “感知” 的任務,然而光有感知是不夠的, “推理” 是更高階人工智能的重要組成部分。比方說醫生診斷,除了需要通過圖像和音頻等感知病人
2023-11-03 10:51:14258 人工智能的飛速發展,深度學習作為其重要分支,正在推動著諸多領域的創新。在這個過程中,GPU扮演著不可或缺的角色。就像超級英雄電影中的主角一樣,GPU在深度學習中擁有舉足輕重的地位。那么,GPU在深度
2023-12-06 08:27:37606
評論
查看更多