以下是關(guān)于volatile關(guān)鍵的外文描述:
By declaring an object volatile, the compiler is informed that the value of the object can change beyond the compiler’s control. The compiler must also assume that any accesses can have side effects—thus all accesses to the volatile object must be preserved.
There are three main reasons for declaring an object volatile:
Shared access; the object is shared between several tasks in a multitasking environment
Trigger access; as for a memory-mapped SFR where the fact that an access occurshas an effect
Modified access; where the contents of the object can change in ways not known tothe compiler.
1、Shared access
the object is shared between several tasks in a multitasking environment。
當(dāng)同一全局變量在多個(gè)線程之間被共享時(shí),有可能會(huì)出現(xiàn)同步錯(cuò)誤,編譯器可能會(huì)將訪問該全局變量的代碼優(yōu)化為訪問某個(gè)寄存器,而不會(huì)再次訪問相應(yīng)的內(nèi)存,導(dǎo)致程序運(yùn)行錯(cuò)誤。
測(cè)試代碼如下:
?
static struct rt_thread v_thread1; static char v_thread1_stack[8192]; static struct rt_thread v_thread2; static char v_thread2_stack[8192]; static int flag; static int count; static void rt_init_thread1_entry(void *parameter) { ? ?while(1) ? { ? ? ? ?rt_thread_mdelay(300); ? ? ? ?flag = 1; ? ? ? ?rt_thread_mdelay(300); ? ? ? ?flag = 0; ? ? ? ?if(count++ > 10) ? ? ? { ? ? ? ? ? ?rt_kprintf("thread1 exit. "); ? ? ? ? ? ?flag = 1; ? ? ? ? ? ?return; ? ? ? } ? } } static void rt_init_thread2_entry(void *parameter) { ? ?while(1) ? { ? ? ? ?while(flag==0); ? ? ? ?rt_kprintf("thread2 running. "); ? ? ? ?rt_thread_mdelay(100); ? ? ? ?if(count++ > 10) ? ? ? { ? ? ? ? ? ?rt_kprintf("thread2 exit. "); ? ? ? ? ? ?return; ? ? ? } ? } } int volatile_test() { ? ?rt_err_t result = RT_EOK; ? ?result = rt_thread_init(&v_thread1, "vth1", ? ? ? ? ? ? ? ? ? ? ? ? ? ?rt_init_thread1_entry, ? ? ? ? ? ? ? ? ? ? ? ? ? ?RT_NULL, ? ? ? ? ? ? ? ? ? ? ? ? ? ?v_thread1_stack, sizeof(v_thread1_stack), ? ? ? ? ? ? ? ? ? ? ? ? ? ?RT_THREAD_PRIORITY_MAX / 3 - 1 , 20); ? ?if (result == RT_EOK) ? ? ? ?rt_thread_startup(&v_thread1); ? ?result = rt_thread_init(&v_thread2, "vth2", ? ? ? ? ? ? ? ? ? ? ? ? ? ?rt_init_thread2_entry, ? ? ? ? ? ? ? ? ? ? ? ? ? ?RT_NULL, ? ? ? ? ? ? ? ? ? ? ? ? ? ?v_thread2_stack, sizeof(v_thread2_stack), ? ? ? ? ? ? ? ? ? ? ? ? ? ?RT_THREAD_PRIORITY_MAX / 3, 20); ? ?if (result == RT_EOK) ? ? ? ?rt_thread_startup(&v_thread2); ? ?return 0; } MSH_CMD_EXPORT(volatile_test, run volatile_test);
?
上面的測(cè)試代碼在 O0 優(yōu)化時(shí)正常運(yùn)行,打印結(jié)果如下:
?
msh />volatile_test thread2 running. msh />thread2 running. thread2 running. thread2 running. thread2 running. thread2 running. thread2 running. thread2 running. thread2 running. thread2 exit. thread1 exit.
?
但是如果開啟 O3 優(yōu)化,則打印結(jié)果如下:
?
msh />volatile_test thread1 exit.
?
也就是說 thread2 永遠(yuǎn)得不到運(yùn)行,那么原因是什么呢,請(qǐng)看下圖的反匯編,語句
?
while(flag==0);
?
被優(yōu)化成了如下匯編:
?
00108b4c: ? ldr ? ? r3, [r4, #+288] # 第一次讀取 flag 的實(shí)際值到 r3 00108b50: ? cmp ? ? r3, #0 ? ? ? ? # 對(duì)比 r3 的值是否為 0 00108b54: ? bne ? ? +0 ? ? ; ? ? ? # 如果不為 0 則跳轉(zhuǎn) 00108b58: ? b ? ? ? -8 ? ? ; ? ? ? # 再次跳轉(zhuǎn)回 cmp 語句繼續(xù)循環(huán)
?
也就是說,整個(gè)程序被翻譯成,只讀取一次 flag 的實(shí)際值,后續(xù)一直使用 r3 寄存器中的值來進(jìn)行對(duì)比,而第一次讀取到的 r3 值為零,因此 while 的條件將永遠(yuǎn)成立,thread2 永遠(yuǎn)也得不到執(zhí)行。
2、Trigger access
as for a memory-mapped SFR(特殊功能寄存器)where the fact that an access occurs has an effect。
當(dāng)讀取類似串口設(shè)備的數(shù)據(jù)寄存器時(shí),一定要加上 volatile,因?yàn)樵摰刂芳拇嫫髦械臄?shù)值可能會(huì)發(fā)生改變,如果不加 volatile,可能會(huì)發(fā)現(xiàn)讀取的數(shù)據(jù)是錯(cuò)誤的。
3、Modified access
where the contents of the object can change in ways not known to the compiler.
對(duì)象的內(nèi)容可能會(huì)被以編譯器不清楚的方式被修改,例如在內(nèi)核態(tài)與用戶態(tài)的程序在不同的虛擬地址訪問同一塊物理內(nèi)存,此時(shí)如果不加上 volatile,則外部的修改無法被感知到,造成程序錯(cuò)誤。
關(guān)于優(yōu)化錯(cuò)誤
如果系統(tǒng)在低優(yōu)化等級(jí)能正常運(yùn)行,但是在高優(yōu)化的情況下的無法正常運(yùn)行,首先懷疑兩個(gè)方面:
是否是一些關(guān)鍵操作沒有添加 volatile
是否是有內(nèi)存寫穿(因?yàn)椴煌膬?yōu)化等級(jí)改變了內(nèi)存排布導(dǎo)致寫穿位置發(fā)生改變)
4、如何避免關(guān)鍵操作被優(yōu)化
情況一
如果發(fā)現(xiàn)加上了 printf 打印,或者調(diào)用了某個(gè)外部函數(shù),系統(tǒng)就正常運(yùn)行了,也要懷疑是否出現(xiàn)了變量訪問被優(yōu)化的情況,因?yàn)槿绻由狭?strong>外部函數(shù)(非本文件中的函數(shù)或其他庫(kù)中的函數(shù))調(diào)用,則編譯器無法確定被引用的變量是否被外部函數(shù)所改變,因而會(huì)自動(dòng)從原有地址重新讀取該變量的值。
如果修改上面的測(cè)試代碼,在 while 循環(huán)中加入 rt_kprintf 打印如下:
?
while(flag==0) { ? ?rt_kprintf("5 "); }
?
則程序仍然正常運(yùn)行,原因就是編譯器不知道 rt_kprintf 函數(shù)是否會(huì)修改 flag 變量,因此編譯器會(huì)嘗試每次都重新讀取 flag 的值。
情況二
還可以使用另外一種方式來解決這個(gè)問題,如下:
?
while(flag==0) { ? ?asm volatile ("":::"memory"); }
?
If our instruction modifies memory in an unpredictable fashion, add "memory" to the list of clobbered registers. This will cause GCC to not keep memory values cached in registers across the assembler instruction. We also have to add the volatile keyword if the memory affected is not listed in the inputs or outputs of the asm.
這將會(huì)告訴編譯器,經(jīng)過一些指令后,memory 中的數(shù)據(jù)已經(jīng)發(fā)生了變化,GCC 將不會(huì)再使用寄存器作為數(shù)據(jù)的緩存。因此再次使用這些數(shù)據(jù)時(shí),會(huì)從內(nèi)存中重新嘗試讀取。使用關(guān)鍵字 volatile 也可以達(dá)到同樣的效果。
以下描述摘自 《GCC-Inline-Assembly-HOWTO》 :
?
Some instructions clobber some hardware registers. We have to list those registers in the clobber-list, ie the field after the third ’:’ in the asm function. This is to inform gcc that we will use and modify them ourselves. So gcc will not assume that the values it loads into these registers will be valid. We shoudn’t list the input and output registers in this list. Because, gcc knows that "asm" uses them (because they are specified explicitly as constraints). If the instructions use any other registers, implicitly or explicitly (and the registers are not present either in input or in the output constraint list), then those registers have to be specified in the clobbered list. If our instruction can alter the condition code register, we have to add "cc" to the list of clobbered registers.
?
4、結(jié)論
關(guān)于 volatile 關(guān)鍵字,最重要的是要認(rèn)識(shí)到一點(diǎn),即是否在編譯器清楚的范圍之外,所操作的變量有可能被改變,如果有這種可能性,則一定要添加上 volatile 關(guān)鍵字,以避免這種錯(cuò)誤。
歸根結(jié)底,是要確定代碼在真實(shí)運(yùn)行的狀態(tài)下,當(dāng)其訪問某個(gè)變量時(shí),是否真正地從這個(gè)變量所在的地址重新讀取該變量的值,而不是直接使用上次存儲(chǔ)在某個(gè)寄存器中的值。
審核編輯:湯梓紅
評(píng)論
查看更多