八位單片機由于內部構造簡單,體積小,成本低廉,在一些較簡單的控制器中應用很廣。即便到了本世紀,在單片機應用中,仍占有相當的份額。由于八位單片機種類繁多,本文僅將常用的幾種在性能上作一個簡單的比較,供讀者在使用時作參考。
1. 51系列
應用最廣泛的八位單片機首推Intel的51系列,由于產品硬件結構合理,指令系統規范,加之生產歷史“悠久”,有先入為主的優勢。世界有許多著名的芯片公司都購買了51芯片的核心專利技術,并在其基礎上進行性能上的擴充,使得芯片得到進一步的完善,形成了一個龐大的體系,直到現在仍在不斷翻新,把單片機世界炒得沸沸揚揚。有人推測,51芯片可能最終形成事實上的標準MCU芯片。
51系列優點之一是它從內部的硬件到軟件有一套完整的按位操作系統,稱作位處理器,或布爾處理器。它的處理對象不是字或字節而是位。它不光能對片內某些特殊功能寄存器的某位進行處理,如傳送、置位、清零、測試等,還能進行位的邏輯運算,其功能十分完備,使用起來得心應手。雖然其他種類的單片機也具有位處理功能,但能進行位邏輯運算的實屬少見。51系列在片內RAM區間還特別開辟了一個雙重功能的地址區間,十六個字節,單元地址20H~2FH,它既可作字節處理,也可作位處理(作位處理時,合128個位,相應位地址為00H~7FH),使用極為靈活。這一功能無疑給使用者提供了極大的方便,因為一個較復雜的程序在運行過程中會遇到很多分支,因而需建立很多標志位,在運行過程中,需要對有關的標志位進行置位、清零或檢測,以確定程序的運行方向。而實施這一處理(包括前面所有的位功能),只需用一條位操作指令即可。
例1:如對21H的第0位(相應位地址為08H)置位,只需用一條位指令,SETB08H對周圍的其他位不會產生影響。
有的單片機并不能直接對RAM單元中的位進行操作,如AVR系列單片機中,若想對RAM中的某位置位時,必須通過狀態寄存器SREG的T位進行中轉。
例2:如對RAM中的R0寄存器的第4位置位,則BSET6 ;狀態寄存器T置位BLD R0, 4 ;將T位復制到R0的第4位顯然,后者比前者要復雜。
51系列的另一個優點是乘法和除法指令,這給編程也帶來了便利。八位除以八位的除法指令,商為八位,精度嫌不夠,用得不多。而八位乘八位的乘法指令,其積為十六位,精度還是能滿足要求的,用的較多。作乘法時,只需一條指令就行了,即 MULAB(兩個乘數分別在累加器A和寄存器B中。積的低位字節在累加器A中,高位字節在寄存器B中)。很多的八位單片機都不具備乘法功能,作乘法時還得編上一段子程序調用,十分不便。
在51系列中,還有一條二進制-十進制調整指令 DA,能將二進制變為BCD碼,這對于十進制的計量十分方便。而在其他的單片機中,則也需調用專用的子程序才行。
Intel公司51系列的典型產品是8051,片內有4K字節的一次性程序存儲器(OTP)。Atmel公司就將其改為電可改寫的閃速存儲器(Flash),容許改寫1000次以上,這給編程和調試帶來極大的便利,其產品AT89C51、AT89C52 ……等成為了當今最流行的八位單片機。
51系列的I/O腳的設置和使用非常簡單,當該腳作輸入腳使用時,只須將該腳設置為高電平(復位時,各I/O口均置高電平)。當該腳作輸出腳使用時,則為高電平或低電平均可。低電平時,吸入電流可達20mA,具有一定的驅動能力;而為高電平時,輸出電流僅數十μA甚至更小(電流實際上是由腳的上拉電流形成的),基本上沒有驅動能力。其原因是高電平時該腳也同時作輸入腳使用,而輸入腳必須具有高的輸入阻抗,因而上拉的電流必須很小才行。作輸出腳使用,欲進行高電平驅動時,得利用外電路來實現(見附圖),I/O腳不通,電流經R驅動LED發光;低電平時,I/O腳導通,電流由該腳入地,LED滅(I/O腳導通時對地的電壓降小于1V,LED的域值1.5~1.8V)。
51系列I/O腳使用簡單,但高電平時無輸出能力,可謂有利有弊。故其他系列的單片機(如PIC系列、AVR系列等)對I/O口進行了改進,增加了方向寄存器以確定輸入或輸出,但使用也變得復雜。
一些簡裝的51產品也相應出現,如Atmel公司的AT89C1051、AT89C2051、AT89C4051等(閃速存儲器分別為1K、2K、4K等,但不能外接數據存儲器),指令系統與AT89C51完全兼容,但引腳均為20腳,不光體積小,而且價格低廉,這使得其他的公司競相仿照。
不過,原51系列也有許多值得改進之處,如運行速度過慢等。當晶振頻率為12MHz時,機器周期達1μs,顯然適應不了現代高速運行的需要。華邦公司(Winbond)生產的產品型號為W77系列和W78系列,W78系列與AT89C系列完全兼容。W77系列為增強型,對原有的8051的時序作了改進,每個機器周期從12個時鐘周期改為4個周期,使速度提高了三倍,同時,晶振頻率最高可達40MHz。W77系列還增加了看門狗WatchDog、兩組UART、兩組DPTR數據指針、ISP等多種功能。
特別是雙數據指針,能給編程帶來很大的便利。在51系列中,數據指針DPTR是片內與片外的數據存儲器打交道的主要途徑(由片外數據存儲器讀入片內累加器A或由片內累加器A 寫入片外數據存儲器),也是程序存儲器與累加器A之間的數據傳送的必由之路。由于頻繁的數據交換,特別是數據塊的搬運和比較,數據指針非常吃緊,它需要不斷地實施現場保護與還原,不光編程變得復雜,而且運行速度也減慢。而當采用兩個數據指針時,可以各負其責,互不相擾,輕松地完成上述過程。兩個數據指針的選取取決于特殊功能寄存器AUXR1的第D0位DPS。當DPS為0時,選中數據指針DPTR0(復位時DPS也為0);DPS為1時,選中數據指針DPTR1。DPS位不能位尋址,故不能進行布爾操作,但由于AUXR1的D1位被強制為邏輯“0”,不可能發生由D0位向D1位進位之可能,因而可以通過對AUXR1進行增1來使D0位由0變為1或由1變為0,從而達到雙數據指針的快速切換的目的,如:
例3:
MOVAUXR1,#0 ; DPS為0,DPTR0有效
……
INC AUXR1 ; DPS為1,DPTR1有效
……
INC AUXR1 ; DPS為0,DPTR0有效
……
ISP功能能實現在系統可編程,可以省去通用的編程器,單片機在用戶板上即可下載和燒錄用戶程序,而無需將單片機從生產好的產品上取下。未定型的程序還可以邊生產邊完善,加快了產品的開發速度,減少了新產品因軟件缺陷帶來的風險。由于可以將程序下載并觀看運行結果,故也可以不用仿真器。
單片機的提速運行、雙數據指針及ISP功能并非是W77系列所特有的,一些新的型號的51系列產品大都有該功能,如Philips的51LPC系列、AT89系列中的某些型號、STC89C系列等等。有的單片機還附有A/D、D/A轉換、片內EEPROM數據存儲器、PWM輸出、I2C總線、上電復位檢測、欠壓復位檢測等等,這些新系列的單片機,它們都兼容8051的指令系統。增強功能的實現,大都是由片內新增的特殊功能寄存器來進行設置,這些寄存器被安排在片內特殊功能寄存器區間(80~FFH)的預留地址上。
比較有代表性的產品還有STC89C51RC、C8051F331/330等等。可以這么說,新的51產品幾乎可以涵蓋所有新的功能。由于新型號的芯片種類太多,此處不可能一一列舉,讀者可根據使用的需求查閱相關的資料。
2.PIC系列
PIC單片機系列是美國微芯公司(Microship)的產品,是當前市場份額增長最快的單片機之一。CPU采用RISC結構,分別有33、35、58條指令(視單片機的級別而定),屬精簡指令集。而51系列有111條指令,AVR單片機有118條指令,都比前者復雜。采用Harvard雙總線結構,運行速度快(指令周期約160~200ns),它能使程序存儲器的訪問和數據存儲器的訪問并行處理,這種指令流水線結構,在一個周期內完成兩部分工作,一是執行指令,二是從程序存儲器取出下一條指令,這樣總的看來每條指令只需一個周期(個別除外),這也是高效率運行的原因之一。此外,它還具有低工作電壓、低功耗、驅動能力強等特點。PIC系列單片機共分三個級別,即基本級、中級、高級。其中又以中級的PIC16F873(A)、PIC16F877 (A) 用的最多,本文以這兩種單片機為例進行說明。這兩種芯片除了引出腳不同外(PIC16F873(A)為28腳的PDIP或SOIC封裝;PIC16F877(A)為40腳的PDIP或44腳的PLCC/QFP封裝),其他的差別并不很大。
PIC系列單片機的I/O口是雙向的,其輸出電路為CMOS互補推挽輸出電路。I/O腳增加了用于設置輸入或輸出狀態的方向寄存器(TRISn , 其中n對應各口,如A、B、C、D、E等),從而解決了51系列I/O腳為高電平時同為輸入和輸出的狀態。當置位1時為輸入狀態,且不管該腳呈高電平或低電平,對外均呈高阻狀態;置位0時為輸出狀態,不管該腳為何種電平,均呈低阻狀態,有相當的驅動能力,低電平吸入電流達25mA,高電平輸出電流可達20mA。相對于51系列而言,這是一個很大的優點,它可以直接驅動數碼管顯示且外電路簡單。它的A/D為10位,能滿足精度要求。具有在線調試及編程(ISP)功能。
該系列單片機的專用寄存器(SFR)并不像51系列那樣都集中在一個固定的地址區間內(80~FFH),而是分散在四個地址區間內,即存儲體0(Bank0:00~7FH)、存儲體1(Bank1 :80~FFH)、存儲體2(Bank2 :100~17FH)、存儲體3(Bank3 :180~1FFH)。只有5個專用寄存器PCL、STATUS、FSR、PCLATH、 INTCON在4個存儲體內同時出現。在編程過程中,少不了要與專用寄存器打交道,得反復地選擇對應的存儲體,也即對狀態寄存器STATUS的第6位(RP1)和第5位(RP0)置位或清零。如:
例4:
CLRFSTATUS ;清零RP1, RP0。選擇存儲體0
……
BSF STATUS,RP0;置位RP0。選擇存儲體1
……
BCF STATUS,RP0;清零RP0。選擇存儲體0
……
這多少給編程帶來了一些麻煩。對于上述的單片機,它的位指令操作通常限制在存儲體0區間(00~7FH)。
數據的傳送和邏輯運算基本上都得通過工作寄存器W(相當于51系列的累加器A)來進行,而51系列的還可以通過寄存器相互之間直接傳送(如:MOV 30H,20H;將寄存器20H的內容直接傳送至寄存器30H中),因而PIC單片機的瓶頸現象比51系列還要嚴重,這在編程中很有感受。
3.AVR系列
AVR單片機是Atmel公司推出的較為新穎的單片機,其顯著的特點為高性能、高速度、低功耗。它取消機器周期,以時鐘周期為指令周期,實行流水作業。AVR單片機指令以字為單位,且大部分指令都為單周期指令。而單周期既可執行本指令功能,同時完成下一條指令的讀取。通常時鐘頻率用4~8MHz,故最短指令執行時間為250~125ns。該系列的型號較多,但可用下面三種為代表:AT90S2313(簡裝型)、AT90S8515、AT90S8535(帶A/D轉換)。
通用寄存器一共32個(R0~R31),前16個寄存器(R0~R15)都不能直接與立即數打交道,因而通用性有所下降。而在51系列中,它所有的通用寄存器(地址00~7FH)均可以直接與立即數打交道,顯然要優于前者。
AVR系列沒有類似累加器A的結構,它主要是通過R16~R31寄存器來實現A的功能。在AVR中,沒有像51系列的數據指針DPTR,而是由X(由R26、R27組成)、Y(由R28、R29組成)、Z(由R30、R31組成)三個16位的寄存器來完成數據指針的功能(相當于有三組DPTR),而且還能作后增量或先減量等的運行,如:
例5:
LDRd, X ;將X所指的地址的內容裝入寄存器Rd中。
LDRd,Y+;將Y所指的地址的內容裝入寄存器Rd
中,然后Y的地址增1。
LDRd,-X ;將X的地址減1所指的地址的內容裝入
寄存器Rd中。
在51系列中,所有的邏輯運算都必須在A中進行;而AVR卻可以在任兩個寄存器之間進行,省去了在A中的來回折騰,這些都比51系列強。
AVR的專用寄存器集中在00~3F地址區間,無需像PIC那樣得先進行選存儲體的過程,使用起來比PIC方便。AVR的片內RAM的地址區間為0060~$00DF(AT90S2313) 和 0060~025F(AT90S8515、AT90S8535),它們占用的是數據空間的地址,這些片內RAM僅僅是用來存儲數據的,通常不具備通用寄存器的功能。當程序復雜時,通用寄存器R0~R31就顯得不夠用;而51系列的通用寄存器多達128個(為AVR的4倍),編程時就不會有這種感覺。
AVR的I/O腳類似PIC,它也有用來控制輸入或輸出的方向寄存器,在輸出狀態下,高電平輸出的電流在10mA左右,低電平吸入電流20mA。雖不如PIC,但比51系列強。
責任編輯;zl
評論
查看更多