中斷服務(wù)程序
中斷是嵌入式系統(tǒng)中重要的組成部分,但是在標(biāo)準(zhǔn)C中不包含中斷。許多編譯開(kāi)發(fā)商在標(biāo)準(zhǔn)C上增加了對(duì)中斷的支持,提供新的關(guān)鍵字用于標(biāo)示中斷服務(wù)程序(ISR),類似于__interrupt、#program interrupt等。當(dāng)一個(gè)函數(shù)被定義為ISR的時(shí)候,編譯器會(huì)自動(dòng)為該函數(shù)增加中斷服務(wù)程序所需要的中斷現(xiàn)場(chǎng)入棧和出棧代碼。
中斷服務(wù)程序需要滿足如下要求:
(1)不能返回值;
(2)不能向ISR傳遞參數(shù);
(3) ISR應(yīng)該盡可能的短小精悍;
(4) printf(char * lpFormatString,…)函數(shù)會(huì)帶來(lái)重入和性能問(wèn)題,不能在ISR中采用。
在某項(xiàng)目的開(kāi)發(fā)中,我們?cè)O(shè)計(jì)了一個(gè)隊(duì)列,在中斷服務(wù)程序中,只是將中斷類型添加入該隊(duì)列中,在主程序的死循環(huán)中不斷掃描中斷隊(duì)列是否有中斷,有則取出隊(duì)列中的第一個(gè)中斷類型,進(jìn)行相應(yīng)處理。
/* 存放中斷的隊(duì)列 */
typedef struct tagIntQueue
{
int intType; /* 中斷類型 */
struct tagIntQueue *next;
}IntQueue;
IntQueue lpIntQueueHead;
__interrupt ISRexample ()
{
int intType;
intType = GetSystemType();
QueueAddTail(lpIntQueueHead, intType);/* 在隊(duì)列尾加入新的中斷 */
}
在主程序循環(huán)中判斷是否有中斷:
While(1)
{
If( !IsIntQueueEmpty() )
{
intType = GetFirstInt();
switch(intType) /* 是不是很象WIN32程序的消息解析函數(shù)? */
{
/* 對(duì),我們的中斷類型解析很類似于消息驅(qū)動(dòng) */
case xxx: /* 我們稱其為“中斷驅(qū)動(dòng)”吧? */
…
break;
case xxx:
…
break;
…
}
}
}
按上述方法設(shè)計(jì)的中斷服務(wù)程序很小,實(shí)際的工作都交由主程序執(zhí)行了。
模塊劃分的“劃”是規(guī)劃的意思,意指怎樣合理的將一個(gè)很大的軟件劃分為一系列功能獨(dú)立的部分合作完成系統(tǒng)的需求
硬件驅(qū)動(dòng)模塊
一個(gè)硬件驅(qū)動(dòng)模塊通常應(yīng)包括如下函數(shù):
(1)中斷服務(wù)程序ISR
(2)硬件初始化
a.修改寄存器,設(shè)置硬件參數(shù)(如UART應(yīng)設(shè)置其波特率,AD/DA設(shè)備應(yīng)設(shè)置其采樣速率等);
b.將中斷服務(wù)程序入口地址寫(xiě)入中斷向量表:
/* 設(shè)置中斷向量表 */
m_myPtr = make_far_pointer(0l); /* 返回void far型指針void far * */
m_myPtr += ITYPE_UART; /* ITYPE_UART: uart中斷服務(wù)程序 */
/* 相對(duì)于中斷向量表首地址的偏移 */
*m_myPtr = &UART _Isr; /* UART _Isr:UART的中斷服務(wù)程序 */
(3)設(shè)置CPU針對(duì)該硬件的控制線
a.如果控制線可作PIO(可編程I/O)和控制信號(hào)用,則設(shè)置CPU內(nèi)部對(duì)應(yīng)寄存器使其作為控制信號(hào);
b.設(shè)置CPU內(nèi)部的針對(duì)該設(shè)備的中斷屏蔽位,設(shè)置中斷方式(電平觸發(fā)還是邊緣觸發(fā))。
(4)提供一系列針對(duì)該設(shè)備的操作接口函數(shù)。例如,對(duì)于LCD,其驅(qū)動(dòng)模塊應(yīng)提供繪制像素、畫(huà)線、繪制矩陣、顯示字符點(diǎn)陣等函數(shù);而對(duì)于實(shí)時(shí)鐘,其驅(qū)動(dòng)模塊則需提供獲取時(shí)間、設(shè)置時(shí)間等函數(shù)。
C的面向?qū)ο蠡?/strong>
在面向?qū)ο蟮恼Z(yǔ)言里面,出現(xiàn)了類的概念。類是對(duì)特定數(shù)據(jù)的特定操作的集合體。類包含了兩個(gè)范疇:數(shù)據(jù)和操作。而C語(yǔ)言中的struct僅僅是數(shù)據(jù)的集合,我們可以利用函數(shù)指針將struct模擬為一個(gè)包含數(shù)據(jù)和操作的“類”。下面的C程序模擬了一個(gè)最簡(jiǎn)單的“類”:
#ifndef C_Class
#define C_Class struct
#endif
C_Class A
{
C_Class A *A_this; /* this指針 */
void (*Foo)(C_Class A *A_this); /* 行為:函數(shù)指針 */
int a; /* 數(shù)據(jù) */
int b;
};
我們可以利用C語(yǔ)言模擬出面向?qū)ο蟮娜齻€(gè)特性:封裝、繼承和多態(tài),但是更多的時(shí)候,我們只是需要將數(shù)據(jù)與行為封裝以解決軟件結(jié)構(gòu)混亂的問(wèn)題。C模擬面向?qū)ο笏枷氲哪康牟辉谟谀M行為本身,而在于解決某些情況下使用C語(yǔ)言編程時(shí)程序整體框架結(jié)構(gòu)分散、數(shù)據(jù)和函數(shù)脫節(jié)的問(wèn)題。我們?cè)诤罄m(xù)章節(jié)會(huì)看到這樣的例子。
總結(jié)
本篇介紹了嵌入式系統(tǒng)編程軟件架構(gòu)方面的知識(shí),主要包括模塊劃分、多任務(wù)還是單任務(wù)選取、單任務(wù)程序典型架構(gòu)、中斷服務(wù)程序、硬件驅(qū)動(dòng)模塊設(shè)計(jì)等,從宏觀上給出了一個(gè)嵌入式系統(tǒng)軟件所包含的主要元素。
請(qǐng)記住:軟件結(jié)構(gòu)是軟件的靈魂!結(jié)構(gòu)混亂的程序面目可憎,調(diào)試、測(cè)試、維護(hù)、升級(jí)都極度困難。
C語(yǔ)言嵌入式系統(tǒng)編程注意事項(xiàng)之內(nèi)存操作
在嵌入式系統(tǒng)的編程中,常常要求在特定的內(nèi)存單元讀寫(xiě)內(nèi)容,匯編有對(duì)應(yīng)的MOV指令,而除C/C++以外的其它編程語(yǔ)言基本沒(méi)有直接訪問(wèn)絕對(duì)地址的能力
數(shù)據(jù)指針
在嵌入式系統(tǒng)的編程中,常常要求在特定的內(nèi)存單元讀寫(xiě)內(nèi)容,匯編有對(duì)應(yīng)的MOV指令,而除C/C++以外的其它編程語(yǔ)言基本沒(méi)有直接訪問(wèn)絕對(duì)地址的能力。在嵌入式系統(tǒng)的實(shí)際調(diào)試中,多借助C語(yǔ)言指針?biāo)哂械膶?duì)絕對(duì)地址單元內(nèi)容的讀寫(xiě)能力。以指針直接操作內(nèi)存多發(fā)生在如下幾種情況:
(1) 某I/O芯片被定位在CPU的存儲(chǔ)空間而非I/O空間,而且寄存器對(duì)應(yīng)于某特定地址;
(2) 兩個(gè)CPU之間以雙端口RAM通信,CPU需要在雙端口RAM的特定單元(稱為mail box)書(shū)寫(xiě)內(nèi)容以在對(duì)方CPU產(chǎn)生中斷;
(3) 讀取在ROM或FLASH的特定單元所燒錄的漢字和英文字模。
譬如:
unsigned char *p = (unsigned char *)0xF000FF00;
*p=11;
以上程序的意義為在絕對(duì)地址0xF0000+0xFF00(80186使用16位段地址和16位偏移地址)寫(xiě)入11。
在使用絕對(duì)地址指針時(shí),要注意指針自增自減操作的結(jié)果取決于指針指向的數(shù)據(jù)類別。上例中p++后的結(jié)果是p= 0xF000FF01,若p指向int,即:
int *p = (int *)0xF000FF00;
p++(或++p)的結(jié)果等同于:p = p+sizeof(int),而p-(或-p)的結(jié)果是p = p-sizeof(int)。
同理,若執(zhí)行:
long int *p = (long int *)0xF000FF00;
則p++(或++p)的結(jié)果等同于:p = p+sizeof(long int) ,而p-(或-p)的結(jié)果是p = p-sizeof(long int)。
記住:CPU以字節(jié)為單位編址,而C語(yǔ)言指針以指向的數(shù)據(jù)類型長(zhǎng)度作自增和自減。理解這一點(diǎn)對(duì)于以指針直接操作內(nèi)存是相當(dāng)重要的。
函數(shù)指針
首先要理解以下三個(gè)問(wèn)題:
(1)C語(yǔ)言中函數(shù)名直接對(duì)應(yīng)于函數(shù)生成的指令代碼在內(nèi)存中的地址,因此函數(shù)名可以直接賦給指向函數(shù)的指針;
(2)調(diào)用函數(shù)實(shí)際上等同于“調(diào)轉(zhuǎn)指令+參數(shù)傳遞處理+回歸位置入棧”,本質(zhì)上最核心的操作是將函數(shù)生成的目標(biāo)代碼的首地址賦給CPU的PC寄存器;
(3)因?yàn)楹瘮?shù)調(diào)用的本質(zhì)是跳轉(zhuǎn)到某一個(gè)地址單元的code去執(zhí)行,所以可以“調(diào)用”一個(gè)根本就不存在的函數(shù)實(shí)體,暈?請(qǐng)往下看:
請(qǐng)拿出你可以獲得的任何一本大學(xué)《微型計(jì)算機(jī)原理》教材,書(shū)中講到,186 CPU啟動(dòng)后跳轉(zhuǎn)至絕對(duì)地址0xFFFF0(對(duì)應(yīng)C語(yǔ)言指針是0xF000FFF0,0xF000為段地址,0xFFF0為段內(nèi)偏移)執(zhí)行,請(qǐng)看下面的代碼:
typedef void (*lp) ( ); /* 定義一個(gè)無(wú)參數(shù)、無(wú)返回類型的 */
/* 函數(shù)指針類型 */
lp lpReset = (lp)0xF000FFF0; /* 定義一個(gè)函數(shù)指針,指向*/
/* CPU啟動(dòng)后所執(zhí)行第一條指令的位置 */
lpReset(); /* 調(diào)用函數(shù) */
在以上的程序中,我們根本沒(méi)有看到任何一個(gè)函數(shù)實(shí)體,但是我們卻執(zhí)行了這樣的函數(shù)調(diào)用:lpReset(),它實(shí)際上起到了“軟重啟”的作用,跳轉(zhuǎn)到CPU啟動(dòng)后第一條要執(zhí)行的指令的位置。
記住:函數(shù)無(wú)它,唯指令集合耳;你可以調(diào)用一個(gè)沒(méi)有函數(shù)體的函數(shù),本質(zhì)上只是換一個(gè)地址開(kāi)始執(zhí)行指令!
評(píng)論
查看更多