ChatGPT簡介
ChatGPT(Generative Pre-trained Transformer)是由OpenAI開發的一個包含了1750億個參數的大型自然語言處理模型。它基于互聯網可用數據訓練的文本生成深度學習模型,支持用各種語言(例如中文、英文等)進行問答、文本摘要生成、翻譯、代碼生成和對話等各種語言任務。
ChatGPT就像一個能夠理解自然語言的大型知識庫。你可以問它各個領域(包括生活、科學、技術、經濟等)的問題,它也可以根據你的要求寫小說,寫文案、甚至是寫計算機程序。下面我們就來看一下它在電磁領域能做什么。
它的知識面有多廣?
第一個問題:天線理論的Chu極限。下面是它的回答,專業吧!
第二個問題,問個物理點的,什么是PT對稱性?它的回答依然很棒。
第三個問題很工程,如何提高MIMO天線陣的增益?它的回答太全面了,好強!
第四個問題關于我的研究領域計算電磁學。它的回答更貼心了,尤其最后一段,像個有經驗的老師。
第五個問題關于如何設計超表面,聚焦平面波到一個焦點。它給出的步驟也很贊!
它的編程能力如何?
我這里都用MATLAB程序測試
1. ?量子電磁基本程序:二能級系統的拉比振蕩仿真。運行MATLAB,結果完全正確。圖我貼出來了,是不是比一般電磁人懂得多?
Please write a MATLAB code to calculate Rabi oscillation of two-level quantum system.
% Define time array for calculation
dt = 0.01;?% time step size
T = 2*pi;?% total time
t = 0T;?% time array
Omega = 1;?% Rabi frequency
gamma = 0;?% decay rate
% Define initial state
psi_0 = [1; 0];?% initial state as [upper level population, lower level population]
% Calculate Rabi oscillation using ODE solver
options = odeset('RelTol', 1e-10,?'AbsTol', 1e-10);
[~, psi] = ode45(@(t, psi) rabi(t, psi, Omega, gamma), t, psi_0, options);
% Plot Rabi oscillation
plot(t, psi(:, 1),?'LineWidth', 2);
xlabel('Time');
ylabel('Population');
title('Rabi Oscillation');
% Define ODE function for Rabi oscillation
function?dpsi = rabi(t, psi, Omega, gamma)
dpsi = [-1i * Omega * (psi(1) - psi(2))/2; 1i * Omega * (psi(1) - psi(2))/2];
end
2.??FDTD基本程序:能運行,基本沒錯,結果貌似不太對。但是它可以聽懂PEC邊界條件,我用的是縮寫!
Please write a 1D FDTD code to simulate a pulse propagation. The two ends are set to be PEC boundary condition.
% Define simulation parameters
dx = 0.1;?% spatial step size (m)
dt = 0.5*dx/3e8;?% time step size (s)
T = 2e-9;?% total simulation time (s)
N = T/dt;?% number of time steps
L = 1;?% length of the 1D simulation domain (m)
nx = L/dx + 1;?% number of spatial steps
% Initialize electric and magnetic fields
Ey = zeros(1,nx);?% electric field
Hx = zeros(1,nx-1);?% magnetic field
% PEC boundary condition
Ey(1) = 0;
Ey(nx) = 0;
% Gaussian pulse as the initial condition
t0 = 5e-10;?% pulse center
sigma = 1e-11;?% pulse width
Ey = Ey + exp(-((1:nx)*dx-t0).^2/2/sigma^2);
% Time loop
for?n = 1:N
% Update magnetic field
for?i = 1:nx-1
Hx(i) = Hx(i) + dt/dx*(Ey(i+1) - Ey(i));
end
% Update electric field
for?i = 2:nx-1
Ey(i) = Ey(i) + dt/dx*(Hx(i) - Hx(i-1));
end
% Apply PEC boundary conditions
Ey(1) = 0;
Ey(nx) = 0;
end
% Plot the electric field versus position
plot((0:nx-1)*dx,Ey)
xlabel('Position (m)')
ylabel('Electric field (V/m)')
3. ?2D FDTD程序:哈哈,不懂了吧,但是給出了編程思路,十分清晰!但也說明對復雜的任務,它的能力目前還是有限的。
Please write a 2D FDTD code for calculating scattering from 2D PEC cylinder.
Unfortunately, I can't provide you a complete code, but I can give you some pointers on how to implement the 2D FDTD method for calculating the scattering from a 2D PEC cylinder.
1.?Initialize grid and time step: You need to create a 2D spatial grid with a defined time step, typically the Courant stability criterion is used to determine the time step size.
2.?Initialize fields: Initialize the electric and magnetic fields to zero.
3.?Incident field: Specify the incident electromagnetic wave that will be scattered by the cylinder.
4.?Update electric field: Calculate the electric field at the next time step using the previous magnetic field, the current electric field, and the time step.
5.?Update magnetic field: Calculate the magnetic field at the next time step using the previous electric field, the current magnetic field, and the time step.
6.?Apply PEC boundary condition: Apply the perfect electric conductor (PEC) boundary condition on the cylinder. This means that the tangential components of the electric field are set to zero at the cylinder surface.
7.?Save fields: Save the electric and magnetic fields at each time step.
8.?Scattered field: Calculate the scattered electric and magnetic fields by subtracting the incident field from the total electric and magnetic fields.
9.?Plot result: Plot the magnitude of the scattered electric field over the 2D grid to obtain the scattering pattern of the cylinder.
Note that this is a high-level overview and some important details, such as absorbing boundary conditions, may have been omitted.
它能幫助我們英文寫作嗎?
我這里提供一篇論文的題目和摘要,讓它幫助寫引言。而且它根據我的建議,不斷修改,我讓它多寫點OAM生成方法,再加點參考文獻。最后的效果我貼出來了,是不是很專業?
The title of paper is “Ultrathin Complementary Metasurface for Orbital Angular Momentum Generation at Microwave Frequencies.” The abstract is “Electromagnetic (EM) waves with helical wave front carry orbital angular momentum (OAM), which is associated with the azimuthal phase of the complex electric field. OAM is a new degree of freedom in EM waves and is promising for channel multiplexing in the communication system. Although the OAM-carrying EM wave attracts more and more attention, the method of OAM generation at microwave frequencies still faces challenges, such as efficiency and simulation time. In this communication, by using the circuit theory and equivalence principle, we build two simplified models, one for a single scatter and one for the whole metasurface to predict their EM responses. Both of the models significantly simplify the design procedure and reduce the simulation time. In this communication, we propose an ultrathin complementary metasurface that converts a left-handed (right-handed) circularly polarized plane wave without OAM to a right-handed (left-handed) circularly polarized wave with OAM of arbitrary orders, and a high transmission efficiency can be achieved.” Could you help to write an introduction?
Please add more OAM generation methods in the introduction.
請再加入一點參考文獻
Electromagnetic (EM) waves with helical wavefronts carry orbital angular momentum (OAM), which is associated with the azimuthal phase of the complex electric field. OAM is a new degree of freedom in EM waves and has gained attention due to its potential in channel multiplexing in communication systems. In recent years, various methods have been proposed to generate OAM-carrying EM waves, including optical vortex generators, metallic spiral phase plates, twisted-nematic liquid crystal displays, and metasurfaces. However, the methods still face challenges such as efficiency and simulation time.
In this communication, the authors present a novel ultrathin complementary metasurface for generating OAM-carrying EM waves at microwave frequencies. The metasurface converts a left-handed (right-handed) circularly polarized plane wave without OAM to a right-handed (left-handed) circularly polarized wave with OAM of arbitrary orders, and achieves a high transmission efficiency. By using circuit theory and the equivalence principle, the authors build two simplified models, one for a single scatterer and one for the whole metasurface, to predict their EM responses. Both models significantly simplify the design procedure and reduce the simulation time.
References:
1. M. J. Padgett and R. W. Boyd, "The Poynting vector in Laguerre-Gaussian laser modes," J. Mod. Opt. 41, No. 7, pp. 2375-2381, 1994.
2. S. M. Zhao, Q. H. Liu, J. X. Chen, J. H. Wen, J. Liu, Y. J. Huang, and J. R. Mosig, "Metasurface for simultaneous manipulation of multiple orbital angular momentum states of electromagnetic waves," Nat. Commun. 7, No. 1, pp. 13155, 2016.
3. S. Zhang, Y. Wang, J. Gao, X. Zhang, Y. Liu, and S. He, "General approach for beam shaping of OAM carrying waves with high topological charges," Sci. Rep. 7, No. 1, pp. 16841, 2017.
4. J. K. Zhang, C. Guo, Q. J. Zeng, Y. Q. Wei, Y. H. Lu, L. Liu, and X. C. Jiang, "Orbital angular momentum multiplexing in millimeter waves for broadband wireless communications," J. Opt. Soc. Am. B 33, No. 12, pp. 2455-2460, 2016.
在能否用ChatGPT寫文章方面,各出版社有自己的態度和規定。例如Nature編輯部明確說明不能把ChatGPT作為作者之一。如果在寫文章時用到了ChatGPT,需要在Methods或其它部分加以說明(Nature 613, 612 (2023))。而有的期刊則允許將ChatGPT列為作者以及用ChatGPT修改文章。所以能否用ChatGPT寫文章,大家還需要非常謹慎地對待,仔細查看一下期刊的規定。
它能輔助教學嗎?
首先我讓它出關于傳輸線的作業,出得不錯,而且難度是遞進的。
然后我讓它來求解自己出的題,沒有任何問題。以后教學壓力太大了,學生如果用這個軟件平臺。
未來它會改變什么?
融合搜索引擎后,它會更加強大,改變科研、教學、工業、國防的方方面面,是顛覆性技術。對教學者和研究者,必須變革未來的教學方法與研究范式,來應對AI帶來的挑戰。
本文是我和劉峰老師一起編寫的科普作品,我們都來自浙江大學信電學院,有問題歡迎留言或討論。科技進步常超過我們的想象,人類與AI的未來不可預期。
注:ChatGPT參與了本文的編輯。
編輯:黃飛
?
評論
查看更多