PELTIER TEC 30X30X3.8MM 6.0A
2024-03-14 22:53:47
半導(dǎo)體致冷器(TEC)很常見(jiàn),看起來(lái)也很簡(jiǎn)單,但簡(jiǎn)單且非常準(zhǔn)確的設(shè)計(jì)模型和方程卻并不常見(jiàn)。這種設(shè)計(jì)模型在各種應(yīng)用中都發(fā)揮了很好的作用,其輸入僅需要典型TEC數(shù)據(jù)手冊(cè)中提供的數(shù)字。
2024-02-15 08:57:00101 TEC-380實(shí)現(xiàn)PROFINET控制器和EtherCAT從站設(shè)備之間的數(shù)據(jù)通信,可將多達(dá)32個(gè)EtherCAT設(shè)備連接到PROFINET(RT和IRT)網(wǎng)絡(luò)。采用 ECATStart 圖形化配置,支持EtherCAT從站設(shè)備描述文件(ESI)解析,同時(shí)還支持EtherCAT從站熱插拔功能。
2024-01-31 15:02:30144 我們正在嘗試在 TC233 控制器中為 CAN 通道 0 創(chuàng)建總線(xiàn),但是 TEC 計(jì)數(shù)器在 0x80 之后沒(méi)有增加。我們已經(jīng)嘗試將CAN_LOW和CAN_HIGH做空。此外,我們已經(jīng)多次嘗試通過(guò)
2024-01-19 06:16:13
組成的電偶時(shí),在電偶的兩端即可出現(xiàn)一端吸收熱量,一端放出熱量的現(xiàn)象。所以TEC也被叫做熱電制冷器。 TEC的工作原理 TEC的最小單元是由一對(duì)(組)N型和P型半導(dǎo)體加連接電極(燒結(jié)點(diǎn))組成,連接電極形成冷端和熱端(見(jiàn)圖1)。在外加電場(chǎng)作用下,電流能夠?qū)⒃诎雽?dǎo)體內(nèi)產(chǎn)生的熱
2024-01-12 16:39:53340 智能鎖制造商U-tec宣布推出首款帶指紋讀取器的鎖閂智能鎖,支持Matter-over-Thread。
2024-01-12 16:17:44387 ,或者是電流穩(wěn)定了幾分鐘之后又開(kāi)始變化。 在控制TEC的電流時(shí),我是否可以不用芯片自帶的mos管,自己用mos管搭建一個(gè)TEC驅(qū)動(dòng)電路進(jìn)而來(lái)提高驅(qū)動(dòng)TEC的電流。
2024-01-11 06:49:12
我在使用做ADN8831做溫度控制時(shí)相應(yīng)的TEC電壓總是不能正常輸出,我的目標(biāo)是控制TEC最大電壓不超過(guò)2V,傳感器平衡時(shí)阻抗為28.85K。Vtempset設(shè)置的是1.25V(這個(gè)管腳是否可以懸空),因?qū)ID控制不太了解,請(qǐng)幫忙看看相應(yīng)的參數(shù),推薦一下可工作的參數(shù),謝謝!
2024-01-09 06:57:16
基本按照參考電路設(shè)計(jì),TEC制冷、加熱電流的配置電阻分別是5.11k,49.9k和20k,則PIN1和PIN32上的電壓分
別是2.33V和0.67V(實(shí)測(cè)略小,因2.5V ref為2.46V
2024-01-08 12:04:11
按照典型電路的設(shè)計(jì),能否實(shí)現(xiàn)30W左右的TEC驅(qū)動(dòng),除了芯片的供電外還需要外接電源嗎?
2024-01-08 11:22:17
你們好!我正在使用貴公司的ADN8831研發(fā)一款產(chǎn)品,使用過(guò)程中遇到了一些問(wèn)題,想要咨詢(xún)一下,具體如下:
問(wèn)題 1 :
使用ADN8831給一個(gè)TEC進(jìn)行溫度控制,由于用于測(cè)量溫度的信號(hào)是正溫度
2024-01-08 07:49:30
,所以過(guò)流時(shí)供電電壓來(lái)回跳動(dòng),會(huì)導(dǎo)致ADN8830發(fā)熱燒毀。TEC用的是5V的TEC制冷片,電路限制最大電壓也是5V,TEC在5V時(shí)的電流是2A,所以按理說(shuō)不會(huì)超過(guò)2A電流才對(duì)。請(qǐng)問(wèn)一下,如何防止PID環(huán)路導(dǎo)致輸出震蕩,還有ADN8830為什么會(huì)發(fā)熱燒毀?
2024-01-08 07:36:23
最近調(diào)試電路時(shí)發(fā)現(xiàn)電路工作不正常,具體狀況是TEC無(wú)法驅(qū)動(dòng)。
通過(guò)測(cè)量ADN8831的各個(gè)管腳發(fā)現(xiàn) :連接TEC兩端的LFB(PIN27)和SFB(PIN 23)電壓會(huì)同時(shí)變化,當(dāng)OUT2(PIN7
2024-01-08 06:53:38
按照官方推薦電路設(shè)計(jì)。接上NTC,TEC,兩者分開(kāi)。PID網(wǎng)絡(luò)只用P,溫度設(shè)置接可調(diào)電源。當(dāng)設(shè)定電壓低于熱敏電阻電壓,熱電致冷塊開(kāi)始制冷,進(jìn)一步降低設(shè)置電壓,監(jiān)控輸出電流,明顯超過(guò)設(shè)定的閾值。調(diào)整
2024-01-05 08:09:22
跳動(dòng),持續(xù)時(shí)間10s-1分鐘不等,此時(shí)激光器波長(zhǎng)也會(huì)有較小波動(dòng),隨著溫度升高最終也會(huì)穩(wěn)定至30mA左右。
用數(shù)字示波器測(cè)試芯片LDR引腳,從加熱轉(zhuǎn)變到制冷時(shí)LDR電壓從0V逐漸升高到5V,在約3.5V處
2024-01-04 06:13:57
你好,
TEC制冷片供電3.3V,1.5A,不能加熱,一端要求接地。制冷片集成了NTC,目標(biāo)溫度是0℃。不知ADN8834是否支持這種類(lèi)型的TEC?
2024-01-03 08:17:41
我們需要用到12VDC驅(qū)動(dòng)的TEC,打算用ADN8831控制,可行嗎?
看手冊(cè)芯片是3-5V供電的,有兩個(gè)反饋管腳分別接到TEC的﹢、-端。
感覺(jué)有風(fēng)險(xiǎn),所以來(lái)問(wèn)一下。
多謝指教!
2023-12-29 08:16:46
我的探測(cè)器特性,自帶反應(yīng)探測(cè)器溫度的電壓輸出管腳。內(nèi)部集成TEC。
我的目的,希望通過(guò)模擬PID網(wǎng)絡(luò)實(shí)現(xiàn)對(duì)探測(cè)器的溫度進(jìn)行閉環(huán)控制。
我的疑問(wèn):
1. 我看到ADN8834芯片中,提到一般
2023-12-29 06:15:43
1 常溫下TEC波紋在20mv以?xún)?nèi),高溫下,TEC-的紋波變化不大,而TEC+的紋波惡化至80~90mv。
(設(shè)計(jì)是按照ADN8834DS和UG858手冊(cè)推薦的電路)
2在測(cè)試階躍響應(yīng)
2023-12-14 06:49:21
最近在利用ADN8834手冊(cè)內(nèi)部的典型電路做溫控測(cè)試,但將14引腳SW與引腳10和17相連接的TEC相連之后,可測(cè)試到10引腳SFB與17引腳LDR電壓相等,也就是TEC兩端無(wú)電壓電流產(chǎn)生,芯片發(fā)燙
2023-12-13 09:33:45
電流大幅跳變,TMPGD引腳接的LED燈一直在閃爍,激光器的波長(zhǎng)也在波動(dòng),這說(shuō)明TEC沒(méi)有穩(wěn)住,TEC引腳一直有占空比不斷變化的PWM波,請(qǐng)各位工程師看看,是否是哪里參數(shù)設(shè)置不對(duì)引起溫度來(lái)回波動(dòng)的?
2023-12-12 07:09:11
摘要:發(fā)光二極管(LED)作為新一代綠色固態(tài)照明光源,已廣泛應(yīng)用于照明和顯示等領(lǐng)域,但散熱問(wèn)題一直是大功率LED封裝的關(guān)鍵技術(shù)瓶頸。采用大功率LED芯片直接固晶熱電制冷器(TEC)的主動(dòng)散熱方法
2023-12-03 08:11:14670 TEC(Thermoelectric Cooler)是一種根據(jù)電流走向來(lái)使物體制冷和制熱的半導(dǎo)體裝置。而 TEC 控制器控制通過(guò) TEC 的電流方向,從而精確地調(diào)整物體的溫度。它效率高、穩(wěn)定性高、可靠性高并且尺寸小。
2023-11-27 17:38:281 溫度敏感產(chǎn)品運(yùn)輸對(duì)供應(yīng)鏈全流程的溫度質(zhì)量要求較高,往往需要借助特殊的溫濕度監(jiān)測(cè)技術(shù)產(chǎn)品。va-Q-tec與虹科Comet合作,采用虹科Comet的U系列溫度記錄儀,為集裝箱運(yùn)輸過(guò)程提供完整的溫控包裝解決方案。
2023-11-23 13:13:19213 隔離模塊 直流轉(zhuǎn)換器 1 輸出 24V 125mA 9V - 36V 輸入
2023-11-22 10:39:15
隔離模塊 直流轉(zhuǎn)換器 1 輸出 9V 333mA 4.5V - 18V 輸入
2023-11-22 10:39:14
隔離模塊 直流轉(zhuǎn)換器 1 輸出 3.3V 700mA 9V - 36V 輸入
2023-11-22 10:39:14
隔離模塊 直流轉(zhuǎn)換器 1 輸出 5V 600mA 9V - 36V 輸入
2023-11-22 10:39:14
隔離模塊 直流轉(zhuǎn)換器 1 輸出 9V 333mA 9V - 36V 輸入
2023-11-22 10:39:14
隔離模塊 直流轉(zhuǎn)換器 1 輸出 9V 333mA 18V - 75V 輸入
2023-11-22 10:39:14
隔離模塊 直流轉(zhuǎn)換器 1 輸出 12V 250mA 9V - 36V 輸入
2023-11-22 10:39:13
隔離模塊 直流轉(zhuǎn)換器 1 輸出 3.3V 700mA 18V - 75V 輸入
2023-11-22 10:39:13
隔離模塊 直流轉(zhuǎn)換器 1 輸出 15V 200mA 18V - 75V 輸入
2023-11-22 10:39:13
隔離模塊 直流轉(zhuǎn)換器 2 輸出 5V -5V 300mA,300mA 18V - 75V 輸入
2023-11-22 10:39:13
隔離模塊 直流轉(zhuǎn)換器 1 輸出 9V 222mA 4.5V - 18V 輸入
2023-11-20 21:26:34
隔離模塊 直流轉(zhuǎn)換器 1 輸出 12V 167mA 9V - 36V 輸入
2023-11-20 21:26:32
隔離模塊 直流轉(zhuǎn)換器 1 輸出 5V 400mA 18V - 75V 輸入
2023-11-20 21:26:32
隔離模塊 直流轉(zhuǎn)換器 1 輸出 3.3V 500mA 9V - 36V 輸入
2023-11-20 21:26:31
隔離模塊 直流轉(zhuǎn)換器 1 輸出 15V 134mA 9V - 36V 輸入
2023-11-20 21:26:31
隔離模塊 直流轉(zhuǎn)換器 1 輸出 9V 222mA 9V - 36V 輸入
2023-11-20 21:26:31
隔離模塊 直流轉(zhuǎn)換器 1 輸出 15V 134mA 18V - 75V 輸入
2023-11-20 21:26:31
隔離模塊 直流轉(zhuǎn)換器 1 輸出 3.3V 500mA 4.5V - 18V 輸入
2023-11-20 21:26:30
隔離模塊 直流轉(zhuǎn)換器 1 輸出 15V 134mA 4.5V - 18V 輸入
2023-11-20 21:26:30
隔離模塊 直流轉(zhuǎn)換器 1 輸出 9V 222mA 18V - 75V 輸入
2023-11-20 21:26:30
隔離模塊 直流轉(zhuǎn)換器 1 輸出 12V 250mA 9V - 18V 輸入
2023-11-20 14:08:09
隔離模塊 直流轉(zhuǎn)換器 1 輸出 15V 200mA 9V - 18V 輸入
2023-11-20 14:08:09
隔離模塊 直流轉(zhuǎn)換器 1 輸出 9V 333mA 9V - 18V 輸入
2023-11-20 14:08:09
隔離模塊 直流轉(zhuǎn)換器 2 輸出 5V -5V 300mA,300mA 4.5V - 13.2V 輸入
2023-11-20 14:08:08
隔離模塊 直流轉(zhuǎn)換器 1 輸出 5V 600mA 36V - 75V 輸入
2023-11-20 14:08:08
隔離模塊 直流轉(zhuǎn)換器 1 輸出 24V 125mA 9V - 18V 輸入
2023-11-20 14:08:07
隔離模塊 直流轉(zhuǎn)換器 1 輸出 5V 600mA 18V - 36V 輸入
2023-11-20 14:08:07
隔離模塊 直流轉(zhuǎn)換器 1 輸出 5V 600mA 9V - 18V 輸入
2023-11-20 14:08:04
隔離模塊 直流轉(zhuǎn)換器 1 輸出 9V 333mA 36V - 75V 輸入
2023-11-20 14:08:04
隔離模塊 直流轉(zhuǎn)換器 1 輸出 15V 200mA 4.5V - 13.2V 輸入
2023-11-20 14:08:03
隔離模塊 直流轉(zhuǎn)換器 1 輸出 9V 333mA 4.5V - 13.2V 輸入
2023-11-20 14:08:03
隔離模塊 直流轉(zhuǎn)換器 1 輸出 3.3V 700mA 9V - 18V 輸入
2023-11-20 14:08:03
隔離模塊 直流轉(zhuǎn)換器 1 輸出 9V 333mA 18V - 36V 輸入
2023-11-20 14:08:03
隔離模塊 直流轉(zhuǎn)換器 1 輸出 5V 400mA 18V - 36V 輸入
2023-11-20 11:50:59
隔離模塊 直流轉(zhuǎn)換器 1 輸出 9V 222mA 18V - 36V 輸入
2023-11-20 11:50:59
隔離模塊 直流轉(zhuǎn)換器 2 輸出 5V -5V 200mA,200mA 18V - 36V 輸入
2023-11-20 11:50:59
隔離模塊 直流轉(zhuǎn)換器 1 輸出 5V 400mA 9V - 18V 輸入
2023-11-20 11:50:58
隔離模塊 直流轉(zhuǎn)換器 1 輸出 12V 167mA 9V - 18V 輸入
2023-11-20 11:50:58
隔離模塊 直流轉(zhuǎn)換器 1 輸出 24V 83mA 9V - 18V 輸入
2023-11-20 11:50:58
隔離模塊 直流轉(zhuǎn)換器 1 輸出 9V 222mA 9V - 18V 輸入
2023-11-20 11:50:58
隔離模塊 直流轉(zhuǎn)換器 1 輸出 24V 83mA 18V - 36V 輸入
2023-11-20 11:50:58
隔離模塊 直流轉(zhuǎn)換器 1 輸出 5V 400mA 4.5V - 13.2V 輸入
2023-11-20 11:50:57
隔離模塊 直流轉(zhuǎn)換器 1 輸出 3.3V 500mA 9V - 18V 輸入
2023-11-20 11:50:57
隔離模塊 直流轉(zhuǎn)換器 1 輸出 15V 134mA 9V - 18V 輸入
2023-11-20 11:50:57
隔離模塊 直流轉(zhuǎn)換器 1 輸出 3.3V 500mA 18V - 36V 輸入
2023-11-20 11:50:57
隔離模塊 直流轉(zhuǎn)換器 1 輸出 9V 222mA 36V - 75V 輸入
2023-11-20 11:50:57
隔離模塊 直流轉(zhuǎn)換器 1 輸出 24V 83mA 9V - 36V 輸入
2023-11-14 19:53:24
隔離模塊 直流轉(zhuǎn)換器 1 輸出 9V 222mA 4.5V - 13.2V 輸入
2023-11-14 19:53:14
隔離模塊 直流轉(zhuǎn)換器 1 輸出 12V 250mA 4.5V - 18V 輸入
2023-11-10 13:40:20
組成的電偶時(shí),在電偶的兩端即可出現(xiàn)一端吸收熱量,一端放出熱量的現(xiàn)象。所以TEC也被叫做熱電制冷器。 TEC的工作原理 TEC的最小單元是由一對(duì)(組)N型和P型半導(dǎo)體加連接電極(燒結(jié)點(diǎn))組成,連接電極形成冷端和熱端(見(jiàn)圖1)。在外加電場(chǎng)作用下,電流能夠?qū)⒃诎雽?dǎo)體內(nèi)產(chǎn)生的熱
2023-10-09 11:00:181373 電子發(fā)燒友網(wǎng)為你提供ADI(ADI)AD1030: TEC/PMIC 數(shù)據(jù)表的高精度模擬前端相關(guān)產(chǎn)品參數(shù)、數(shù)據(jù)手冊(cè),更有AD1030: TEC/PMIC 數(shù)據(jù)表的高精度模擬前端的引腳圖、接線(xiàn)圖、封裝
2023-10-07 17:47:09
SOA為什么要用TEC控溫
1、溫度變化會(huì)引起SOA芯片中心波長(zhǎng)的漂移。溫度越高,中心波長(zhǎng)會(huì)向長(zhǎng)波方向移動(dòng)。
2、溫度變化會(huì)引起SOA芯片增益譜的變化。溫度越高,輸出光功率會(huì)減小。
3、溫度
2023-09-28 16:36:073102 精密產(chǎn)品,TIM熱界面材料引言:熱管理解決方案有很多,主要分為兩類(lèi):主動(dòng)制冷和被動(dòng)制冷。主動(dòng)制冷系統(tǒng)利用基于壓縮機(jī)或固態(tài)熱泵(熱電設(shè)備)來(lái)實(shí)現(xiàn)制冷到環(huán)境溫度以下。被動(dòng)熱管理解決方案僅依靠傳導(dǎo)或?qū)α鱽?lái)傳遞熱量,通常由界面材料、散熱器和風(fēng)扇組成。被動(dòng)散熱技術(shù)最常用
2023-09-15 08:12:12543 TEC是熱電冷卻器的縮寫(xiě)。TEC 是一種半導(dǎo)體或固態(tài)器件,利用珀?duì)柼?yīng)產(chǎn)生加熱和冷卻。TEC 的其他名稱(chēng)包括帕爾貼設(shè)備、固態(tài)冰箱和帕爾貼熱泵。TEC可用于在很寬的范圍內(nèi)散熱,從幾毫瓦一直到幾千
2023-08-09 21:49:40807 關(guān)鍵詞:TEC半導(dǎo)體制冷片,導(dǎo)熱散熱,TIM熱界面材料引言:半導(dǎo)體制冷器(ThermoElectricCooler)是利用半導(dǎo)體材料的珀?duì)柼?yīng)制成的。所謂珀?duì)柼?yīng),是指當(dāng)直流電流通過(guò)兩種半導(dǎo)體
2023-08-04 08:13:31908 陶瓷薄膜電路過(guò)渡塊,集成電阻、電容、電感薄膜電路
光通信、光電集成系統(tǒng)、微波通信、激光器/大功率LED、熱電半導(dǎo)體制冷器TEC、紅外熱影像/醫(yī)療
2023-07-25 09:12:38316 關(guān)鍵詞:TEC半導(dǎo)體制冷片,導(dǎo)熱散熱,TIM熱界面材料引言:半導(dǎo)體制冷器(ThermoElectricCooler)是利用半導(dǎo)體材料的珀?duì)柼?yīng)制成的。所謂珀?duì)柼?yīng),是指當(dāng)直流電流通過(guò)兩種半導(dǎo)體
2023-06-28 10:01:321243 熱電冷卻器 (TEC) 可用于許多需要精確溫度控制的應(yīng)用中。溫度關(guān)鍵組件與TEC和溫度監(jiān)測(cè)器集成到單個(gè)熱工程模塊中。TEC還可以通過(guò)反轉(zhuǎn)電流來(lái)加熱。TEC的小尺寸允許對(duì)單個(gè)組件進(jìn)行精確的熱控制,例如光纖激光驅(qū)動(dòng)器,精密基準(zhǔn)電壓源或任何溫度關(guān)鍵設(shè)備。
2023-06-10 15:30:591833 關(guān)鍵詞:半導(dǎo)體制冷片,TIM熱界面材料,熱導(dǎo)率引言:半導(dǎo)體制冷器(ThermoElectricCooler)是利用半導(dǎo)體材料的珀?duì)柼?yīng)制成的。所謂珀?duì)柼?yīng),是指當(dāng)直流電流通過(guò)兩種半導(dǎo)體材料組成
2023-05-16 10:33:291096 MAX1968/MAX1969是高度集成、高性?xún)r(jià)比、高效率的的開(kāi)關(guān)型驅(qū)動(dòng)器,適用于Peltier熱電制冷器(TEC)模塊。兩種器件都采用直接的電流控制,消除了TEC中的浪涌電流。片內(nèi)FET在提供
2023-04-10 15:52:29
MAX1968/MAX1969是高度集成、高性?xún)r(jià)比、高效率的的開(kāi)關(guān)型驅(qū)動(dòng)器,適用于Peltier熱電制冷器(TEC)模塊。兩種器件都采用直接的電流控制,消除了TEC中的浪涌電流。片內(nèi)FET在提供
2023-04-10 15:48:47
MAX1978/MAX1979是用于Peltier熱電制冷器(TEC)模塊的最小、最安全、最精確的完全單片溫度控制器。片內(nèi)FET以及熱控制環(huán)電路在提供高效率的同時(shí),盡可能地減少了外部元件
2023-04-10 15:41:04
MAX1978/MAX1979是用于Peltier熱電制冷器(TEC)模塊的最小、最安全、最精確的完全單片溫度控制器。片內(nèi)FET以及熱控制環(huán)電路在提供高效率的同時(shí),盡可能地減少了外部元件
2023-04-10 15:33:58
MAX8520/MAX8521設(shè)計(jì)用于驅(qū)動(dòng)空間受限的光纖模塊中的熱電制冷器(TEC)。這兩款器件提供±1.5A輸出電流,并控制TEC電流,以消除有害的電流浪涌。片內(nèi)FET減少了外部元件的數(shù)目,高開(kāi)關(guān)
2023-04-10 15:30:43
MAX8520/MAX8521設(shè)計(jì)用于驅(qū)動(dòng)空間受限的光纖模塊中的熱電制冷器(TEC)。這兩款器件提供±1.5A輸出電流,并控制TEC電流,以消除有害的電流浪涌。片內(nèi)FET減少了外部元件的數(shù)目,高開(kāi)關(guān)
2023-04-10 15:15:40
TEC 2-4811
2023-04-06 23:32:17
H5TQ4G63EFR-TEC
2023-03-29 21:47:29
H5TQ2G63GFR-TEC
2023-03-29 21:43:45
TEC 2-0921
2023-03-28 13:12:50
評(píng)論
查看更多