精品国产人成在线_亚洲高清无码在线观看_国产在线视频国产永久2021_国产AV综合第一页一个的一区免费影院黑人_最近中文字幕MV高清在线视频

電子發(fā)燒友App

硬聲App

0
  • 聊天消息
  • 系統(tǒng)消息
  • 評論與回復
登錄后你可以
  • 下載海量資料
  • 學習在線課程
  • 觀看技術(shù)視頻
  • 寫文章/發(fā)帖/加入社區(qū)
創(chuàng)作中心

完善資料讓更多小伙伴認識你,還能領(lǐng)取20積分哦,立即完善>

3天內(nèi)不再提示

電子發(fā)燒友網(wǎng)>人工智能>叫板谷歌,亞馬遜微軟推出深度學習庫 訓練神經(jīng)網(wǎng)絡更加簡單

叫板谷歌,亞馬遜微軟推出深度學習庫 訓練神經(jīng)網(wǎng)絡更加簡單

1234下一頁全文

本文導航

收藏

聲明:本文內(nèi)容及配圖由入駐作者撰寫或者入駐合作網(wǎng)站授權(quán)轉(zhuǎn)載。文章觀點僅代表作者本人,不代表電子發(fā)燒友網(wǎng)立場。文章及其配圖僅供工程師學習之用,如有內(nèi)容侵權(quán)或者其他違規(guī)問題,請聯(lián)系本站處理。 舉報投訴

評論

查看更多

相關(guān)推薦

深度學習與圖神經(jīng)網(wǎng)絡學習分享:CNN經(jīng)典網(wǎng)絡之-ResNet

深度學習與圖神經(jīng)網(wǎng)絡學習分享:CNN 經(jīng)典網(wǎng)絡之-ResNet resnet 又叫深度殘差網(wǎng)絡 圖像識別準確率很高,主要作者是國人哦 深度網(wǎng)絡的退化問題 深度網(wǎng)絡難以訓練,梯度消失,梯度爆炸
2022-10-12 09:54:42685

神經(jīng)網(wǎng)絡基本的訓練和工作原理是什么

在兩層神經(jīng)網(wǎng)絡之間,必須有激活函數(shù)連接,從而加入非線性因素,提高神經(jīng)網(wǎng)絡的能力。所以,我們先從激活函數(shù)學起,一類是擠壓型的激活函數(shù),常用于簡單網(wǎng)絡學習;另一類是半線性的激活函數(shù),常用于深度網(wǎng)絡學習
2023-08-07 10:02:29441

詳解深度學習神經(jīng)網(wǎng)絡與卷積神經(jīng)網(wǎng)絡的應用

在如今的網(wǎng)絡時代,錯綜復雜的大數(shù)據(jù)和網(wǎng)絡環(huán)境,讓傳統(tǒng)信息處理理論、人工智能與人工神經(jīng)網(wǎng)絡都面臨巨大的挑戰(zhàn)。近些年,深度學習逐漸走進人們的視線,通過深度學習解決若干問題的案例越來越多。一些傳統(tǒng)的圖像
2024-01-11 10:51:32596

英特爾百度攜手研發(fā)Nervana神經(jīng)網(wǎng)絡訓練處理器 極速訓練深度學習

英特爾正與百度合作開發(fā)英特爾? Nervana?神經(jīng)網(wǎng)絡訓練處理器(NNP-T)。這一合作包括全新定制化加速器,以實現(xiàn)極速訓練深度學習模型的目的。
2019-07-05 17:25:00847

深度學習與數(shù)據(jù)挖掘的關(guān)系

深度學習的概念源于人工神經(jīng)網(wǎng)絡的研究。含多隱層的多層感知器就是一種深度學習結(jié)構(gòu)。深度學習通過組合低層特征形成更加抽象的高層表示屬性類別或特征,以發(fā)現(xiàn)數(shù)據(jù)的分布式特征表示。晦澀難懂的概念,略微有些難以
2018-07-04 16:07:53

深度神經(jīng)網(wǎng)絡是什么

多層感知機 深度神經(jīng)網(wǎng)絡in collaboration with Hsu Chung Chuan, Lin Min Htoo, and Quah Jia Yong. 與許忠傳,林敏濤和華佳勇合作
2021-07-12 06:35:22

神經(jīng)網(wǎng)絡和反向傳播算法

03_深度學習入門_神經(jīng)網(wǎng)絡和反向傳播算法
2019-09-12 07:08:05

神經(jīng)網(wǎng)絡教程(李亞非)

神經(jīng)元  第3章 EBP網(wǎng)絡(反向傳播算法)  3.1 含隱層的前饋網(wǎng)絡學習規(guī)則  3.2 Sigmoid激發(fā)函數(shù)下的BP算法  3.3 BP網(wǎng)絡訓練與測試  3.4 BP算法的改進  3.5 多層
2012-03-20 11:32:43

神經(jīng)網(wǎng)絡結(jié)構(gòu)搜索有什么優(yōu)勢?

近年來,深度學習的繁榮,尤其是神經(jīng)網(wǎng)絡的發(fā)展,顛覆了傳統(tǒng)機器學習特征工程的時代,將人工智能的浪潮推到了歷史最高點。然而,盡管各種神經(jīng)網(wǎng)絡模型層出不窮,但往往模型性能越高,對超參數(shù)的要求也越來越嚴格
2019-09-11 11:52:14

神經(jīng)網(wǎng)絡解決方案讓自動駕駛成為現(xiàn)實

制造業(yè)而言,深度學習神經(jīng)網(wǎng)絡開辟了令人興奮的研究途徑。為了實現(xiàn)從諸如高速公路全程自動駕駛儀的短時輔助模式到專職無人駕駛旅行的自動駕駛,汽車制造業(yè)一直在尋求讓響應速度更快、識別準確度更高的方法,而深度
2017-12-21 17:11:34

神經(jīng)網(wǎng)絡資料

基于深度學習神經(jīng)網(wǎng)絡算法
2019-05-16 17:25:05

簡單神經(jīng)網(wǎng)絡的實現(xiàn)

簡單神經(jīng)網(wǎng)絡
2019-09-11 11:57:36

AI工程師 10 個深度學習方法

。最大池是通過將最大過濾器應用于通常不重疊的初始表征子區(qū)域來完成的。6、批量標準化當然,包括深度網(wǎng)絡在內(nèi)的神經(jīng)網(wǎng)絡需要仔細調(diào)整權(quán)重初始值和學習參數(shù)。批量標準化能夠使這個過程更加簡單。權(quán)重問題:無論怎么設置
2019-03-07 20:17:28

AI知識科普 | 從無人相信到萬人追捧的神經(jīng)網(wǎng)絡

的復雜程度,通過調(diào)整內(nèi)部大量節(jié)點之間相互連接的關(guān)系,從而達到處理信息的目的,并具有自學習和自適應的能力。簡單來說,就是通過大量的樣本訓練神經(jīng)網(wǎng)絡,得到結(jié)論。接著就可以輸入新的信息,看最后得出怎樣的回應
2018-06-05 10:11:50

CV之YOLOv3:深度學習之計算機視覺神經(jīng)網(wǎng)絡Yolov3-5clessses訓練自己的數(shù)據(jù)集全程記錄

CV之YOLOv3:深度學習之計算機視覺神經(jīng)網(wǎng)絡Yolov3-5clessses訓練自己的數(shù)據(jù)集全程記錄
2018-12-24 11:51:47

CV之YOLO:深度學習之計算機視覺神經(jīng)網(wǎng)絡tiny-yolo-5clessses訓練自己的數(shù)據(jù)集全程記錄

CV之YOLO:深度學習之計算機視覺神經(jīng)網(wǎng)絡tiny-yolo-5clessses訓練自己的數(shù)據(jù)集全程記錄
2018-12-24 11:50:57

MATLAB神經(jīng)網(wǎng)絡工具箱函數(shù)

遞歸網(wǎng)絡newelm 創(chuàng)建一Elman遞歸網(wǎng)絡2. 網(wǎng)絡應用函數(shù)sim 仿真一個神經(jīng)網(wǎng)絡init 初始化一個神經(jīng)網(wǎng)絡adapt 神經(jīng)網(wǎng)絡的自適應化train 訓練一個神經(jīng)網(wǎng)絡3. 權(quán)函數(shù)dotprod
2009-09-22 16:10:08

Nanopi深度學習之路(1)深度學習框架分析

,高度模塊化,可擴展性)。 ? 同時支持卷積神經(jīng)網(wǎng)絡和循環(huán)神經(jīng)網(wǎng)絡,以及兩者的組合。? 在 CPU 和 GPU 上無縫運行。--摘自《Keras:基于-Python-的深度學習
2018-06-04 22:32:12

Qualcomm最新推出神經(jīng)處理引擎

最近發(fā)現(xiàn)Qualcomm推出了一款神經(jīng)處理引擎,因為好奇就去了解了一下。 這個比較強勢,它可以不依賴云而是依賴平臺的異構(gòu)計算能力在設備上就可以直接跑被訓練過的神經(jīng)網(wǎng)絡。這個Neural
2018-09-27 09:58:39

TDA4對深度學習的重要性

DSP(Digital Signal Processor)和 EVE(Embedded Vision/Vector Engine),用于加速計算深度學習神經(jīng)網(wǎng)絡。相比于上一代TDA2/TDA3系列
2022-11-03 06:53:11

labview BP神經(jīng)網(wǎng)絡的實現(xiàn)

請問:我在用labview做BP神經(jīng)網(wǎng)絡實現(xiàn)故障診斷,在NI官網(wǎng)找到了機器學習工具包(MLT),但是里面沒有關(guān)于這部分VI的幫助文檔,對于”BP神經(jīng)網(wǎng)絡分類“這個范例有很多不懂的地方,比如
2017-02-22 16:08:08

labview實現(xiàn)深度學習,還在用python?

元結(jié)構(gòu),用計算機構(gòu)造的簡化了的人腦神經(jīng)網(wǎng)絡模型,其主要用于圖像分類和識別。labview是一個廣泛應用于工業(yè)自動化測控領(lǐng)域的編程平臺,其具有很多不同行業(yè)的算法庫,例如vision視覺,集成了常用的視覺
2020-07-23 20:33:10

matlab實現(xiàn)神經(jīng)網(wǎng)絡 精選資料分享

神經(jīng)神經(jīng)網(wǎng)絡,對于神經(jīng)網(wǎng)絡的實現(xiàn)是如何一直沒有具體實現(xiàn)一下:現(xiàn)看到一個簡單神經(jīng)網(wǎng)絡模型用于訓練的輸入數(shù)據(jù):對應的輸出數(shù)據(jù):我們這里設置:1:節(jié)點個數(shù)設置:輸入層、隱層、輸出層的節(jié)點
2021-08-18 07:25:21

【AI學習】第3篇--人工神經(jīng)網(wǎng)絡

`本篇主要介紹:人工神經(jīng)網(wǎng)絡的起源、簡單神經(jīng)網(wǎng)絡模型、更多神經(jīng)網(wǎng)絡模型、機器學習的步驟:訓練與預測、訓練的兩階段:正向推演與反向傳播、以TensorFlow + Excel表達訓練流程以及AI普及化教育之路。`
2020-11-05 17:48:39

【PYNQ-Z2申請】基于PYNQ-Z2的神經(jīng)網(wǎng)絡圖形識別

項目名稱:基于PYNQ-Z2的神經(jīng)網(wǎng)絡圖形識別試用計劃:申請理由:本人為一名嵌入式軟件工程師,對FPGA有一段時間的接觸,基于FPGA設計過簡單的ASCI數(shù)字芯片。目前正好在學習基于python
2019-01-09 14:48:59

【PYNQ-Z2申請】基于PYNQ的卷積神經(jīng)網(wǎng)絡加速

項目名稱:基于PYNQ的卷積神經(jīng)網(wǎng)絡加速試用計劃:申請理由:本人研究生在讀,想要利用PYNQ深入探索卷積神經(jīng)網(wǎng)絡的硬件加速,在PYNQ上實現(xiàn)圖像的快速處理項目計劃:1、在PC端實現(xiàn)Lnet網(wǎng)絡訓練
2018-12-19 11:37:22

【PYNQ-Z2試用體驗】神經(jīng)網(wǎng)絡基礎知識

能在外界信息的基礎上改變內(nèi)部結(jié)構(gòu),是一種自適應系統(tǒng),通俗的講就是具備學習功能。現(xiàn)代神經(jīng)網(wǎng)絡是一種非線性統(tǒng)計性數(shù)據(jù)建模工具。簡單來說,就是給定輸入,神經(jīng)網(wǎng)絡經(jīng)過一系列計算之后,輸出最終結(jié)果。這好比人的大腦
2019-03-03 22:10:19

【專輯精選】人工智能之神經(jīng)網(wǎng)絡教程與資料

電子發(fā)燒友總結(jié)了以“神經(jīng)網(wǎng)絡”為主題的精選干貨,今后每天一個主題為一期,希望對各位有所幫助!(點擊標題即可進入頁面下載相關(guān)資料)人工神經(jīng)網(wǎng)絡算法的學習方法與應用實例(pdf彩版)卷積神經(jīng)網(wǎng)絡入門資料MATLAB神經(jīng)網(wǎng)絡30個案例分析《matlab神經(jīng)網(wǎng)絡應用設計》深度學習神經(jīng)網(wǎng)絡
2019-05-07 19:18:14

【案例分享】ART神經(jīng)網(wǎng)絡與SOM神經(jīng)網(wǎng)絡

元,它決定了該輸入向量在地位空間中的位置。SOM神經(jīng)網(wǎng)絡訓練的目的就是為每個輸出層神經(jīng)元找到合適的權(quán)向量,以達到保持拓撲結(jié)構(gòu)的目的。SOM的訓練過程其實很簡單,就是接收到一個訓練樣本后,每個輸出層神經(jīng)
2019-07-21 04:30:00

人工神經(jīng)網(wǎng)絡原理及下載

這個網(wǎng)絡輸入和相應的輸出來“訓練”這個網(wǎng)絡網(wǎng)絡根據(jù)輸入和輸出不斷地調(diào)節(jié)自己的各節(jié)點之間的權(quán)值來滿足輸入和輸出。這樣,當訓練結(jié)束后,我們給定一個輸入,網(wǎng)絡便會根據(jù)自己已調(diào)節(jié)好的權(quán)值計算出一個輸出。這就是神經(jīng)網(wǎng)絡簡單原理。  神經(jīng)網(wǎng)絡原理下載-免費
2008-06-19 14:40:42

人工神經(jīng)網(wǎng)絡實現(xiàn)方法有哪些?

人工神經(jīng)網(wǎng)絡(Artificial Neural Network,ANN)是一種類似生物神經(jīng)網(wǎng)絡的信息處理結(jié)構(gòu),它的提出是為了解決一些非線性,非平穩(wěn),復雜的實際問題。那有哪些辦法能實現(xiàn)人工神經(jīng)網(wǎng)絡呢?
2019-08-01 08:06:21

人臉識別、語音翻譯、無人駕駛...這些高科技都離不開深度神經(jīng)網(wǎng)絡了!

,如何用一個神經(jīng)網(wǎng)絡,寫出一套機器學習算法,來自動識別未知的圖像。一個 4 層的神經(jīng)網(wǎng)絡輸入層經(jīng)過幾層算法得到輸出層 實現(xiàn)機器學習的方法有很多,近年被人們討論得多的方法就是深度學習深度學習是一種實現(xiàn)
2018-05-11 11:43:14

什么是深度學習?使用FPGA進行深度學習的好處?

準確的模型。有了上述機制,現(xiàn)在可以通過讓神經(jīng)網(wǎng)絡模型學習各種問題來自動解決問題,創(chuàng)建高精度模型,并對新數(shù)據(jù)進行推理。然而,由于單個神經(jīng)網(wǎng)絡只能解決簡單的問題,人們嘗試通過構(gòu)建深度神經(jīng)網(wǎng)絡 (DNN
2023-02-17 16:56:59

什么是LSTM神經(jīng)網(wǎng)絡

簡單理解LSTM神經(jīng)網(wǎng)絡
2021-01-28 07:16:57

從AlexNet到MobileNet,帶你入門深度神經(jīng)網(wǎng)絡

通過堆疊卷積層使得模型更深更寬,同時借助GPU使得訓練再可接受的時間范圍內(nèi)得到結(jié)果,推動了卷積神經(jīng)網(wǎng)絡甚至是深度學習的發(fā)展。下面是AlexNet的架構(gòu):AlexNet的特點有:1.借助擁有1500萬標簽
2018-05-08 15:57:47

優(yōu)化神經(jīng)網(wǎng)絡訓練方法有哪些?

優(yōu)化神經(jīng)網(wǎng)絡訓練方法有哪些?
2022-09-06 09:52:36

使用keras搭建神經(jīng)網(wǎng)絡實現(xiàn)基于深度學習算法的股票價格預測

本文使用keras搭建神經(jīng)網(wǎng)絡,實現(xiàn)基于深度學習算法的股票價格預測。本文使用的數(shù)據(jù)來源為tushare,一個免費開源接口;且只取開票價進行預測。import numpy as npimport
2022-02-08 06:40:03

卷積神經(jīng)網(wǎng)絡CNN介紹

深度學習】卷積神經(jīng)網(wǎng)絡CNN
2020-06-14 18:55:37

卷積神經(jīng)網(wǎng)絡深度卷積網(wǎng)絡:實例探究及學習總結(jié)

深度學習工程師-吳恩達》03卷積神經(jīng)網(wǎng)絡深度卷積網(wǎng)絡:實例探究 學習總結(jié)
2020-05-22 17:15:57

卷積神經(jīng)網(wǎng)絡如何使用

卷積神經(jīng)網(wǎng)絡(CNN)究竟是什么,鑒于神經(jīng)網(wǎng)絡在工程上經(jīng)歷了曲折的歷史,您為什么還會在意它呢? 對于這些非常中肯的問題,我們似乎可以給出相對簡明的答案。
2019-07-17 07:21:50

卷積神經(jīng)網(wǎng)絡模型發(fā)展及應用

卷積神經(jīng)網(wǎng)絡模型發(fā)展及應用轉(zhuǎn)載****地址:http://fcst.ceaj.org/CN/abstract/abstract2521.shtml深度學習是機器學習和人工智能研究的最新趨勢,作為一個
2022-08-02 10:39:39

卷積神經(jīng)網(wǎng)絡簡介:什么是機器學習

復雜數(shù)據(jù)中提取特征的強大工具。例如,這包括音頻信號或圖像中的復雜模式識別。本文討論了 CNN 相對于經(jīng)典線性規(guī)劃的優(yōu)勢。后續(xù)文章“訓練卷積神經(jīng)網(wǎng)絡:什么是機器學習?——第2部分”將討論如何訓練CNN
2023-02-23 20:11:10

圖像預處理和改進神經(jīng)網(wǎng)絡推理的簡要介紹

為提升識別準確率,采用改進神經(jīng)網(wǎng)絡,通過Mnist數(shù)據(jù)集進行訓練。整體處理過程分為兩步:圖像預處理和改進神經(jīng)網(wǎng)絡推理。圖像預處理主要根據(jù)圖像的特征,將數(shù)據(jù)處理成規(guī)范的格式,而改進神經(jīng)網(wǎng)絡推理主要用于輸出結(jié)果。 整個過程分為兩個步驟:圖像預處理和神經(jīng)網(wǎng)絡推理。需要提前安裝Tengine框架,
2021-12-23 08:07:33

基于深度神經(jīng)網(wǎng)絡的激光雷達物體識別系統(tǒng)

【新技術(shù)發(fā)布】基于深度神經(jīng)網(wǎng)絡的激光雷達物體識別系統(tǒng)及其嵌入式平臺部署激光雷達可以準確地完成三維空間的測量,具有抗干擾能力強、信息豐富等優(yōu)點,但受限于數(shù)據(jù)量大、不規(guī)則等難點,基于深度神經(jīng)網(wǎng)絡
2021-12-21 07:59:18

基于深度神經(jīng)網(wǎng)絡的激光雷達物體識別系統(tǒng)及其嵌入式平臺部署

基于深度神經(jīng)網(wǎng)絡的激光雷達物體識別系統(tǒng)及其嵌入式平臺部署
2021-01-04 06:26:23

基于BP神經(jīng)網(wǎng)絡的PID控制

最近在學習電機的智能控制,上周學習了基于單神經(jīng)元的PID控制,這周研究基于BP神經(jīng)網(wǎng)絡的PID控制。神經(jīng)網(wǎng)絡具有任意非線性表達能力,可以通過對系統(tǒng)性能的學習來實現(xiàn)具有最佳組合的PID控制。利用BP
2021-09-07 07:43:47

基于光學芯片的神經(jīng)網(wǎng)絡訓練解析,不看肯定后悔

基于光學芯片的神經(jīng)網(wǎng)絡訓練解析,不看肯定后悔
2021-06-21 06:33:55

基于賽靈思FPGA的卷積神經(jīng)網(wǎng)絡實現(xiàn)設計

FPGA 上實現(xiàn)卷積神經(jīng)網(wǎng)絡 (CNN)。CNN 是一類深度神經(jīng)網(wǎng)絡,在處理大規(guī)模圖像識別任務以及與機器學習類似的其他問題方面已大獲成功。在當前案例中,針對在 FPGA 上實現(xiàn) CNN 做一個可行性研究
2019-06-19 07:24:41

如何移植一個CNN神經(jīng)網(wǎng)絡到FPGA中?

訓練一個神經(jīng)網(wǎng)絡并移植到Lattice FPGA上,通常需要開發(fā)人員既要懂軟件又要懂數(shù)字電路設計,是個不容易的事。好在FPGA廠商為我們提供了許多工具和IP,我們可以在這些工具和IP的基礎上做
2020-11-26 07:46:03

如何進行高效的時序圖神經(jīng)網(wǎng)絡訓練

現(xiàn)有的圖數(shù)據(jù)規(guī)模極大,導致時序圖神經(jīng)網(wǎng)絡訓練需要格外長的時間,因此使用多GPU進行訓練變得成為尤為重要,如何有效地將多GPU用于時序圖神經(jīng)網(wǎng)絡訓練成為一個非常重要的研究議題。本文提供了兩種方式來
2022-09-28 10:37:20

訓練好的神經(jīng)網(wǎng)絡用于應用的時候,權(quán)值是不是不能變了?

訓練好的神經(jīng)網(wǎng)絡用于應用的時候,權(quán)值是不是不能變了????就是已經(jīng)訓練好的神經(jīng)網(wǎng)絡是不是相當于得到一個公式了,權(quán)值不能變了
2016-10-24 21:55:22

探討一下深度學習在嵌入式設備上的應用

下面來探討一下深度學習在嵌入式設備上的應用,具體如下:1、深度學習的概念源于人工神經(jīng)網(wǎng)絡的研究,包含多個隱層的多層感知器(MLP) 是一種原始的深度學習結(jié)構(gòu)。深度學習通過組合低層特征形成更加抽象
2021-10-27 08:02:31

改善深層神經(jīng)網(wǎng)絡--超參數(shù)優(yōu)化、batch正則化和程序框架 學習總結(jié)

深度學習工程師-吳恩達》02改善深層神經(jīng)網(wǎng)絡--超參數(shù)優(yōu)化、batch正則化和程序框架 學習總結(jié)
2020-06-16 14:52:01

機器學習訓練秘籍——吳恩達

來說,提升算法性能的更加可靠的方法仍然是訓練更大的網(wǎng)絡以及獲取更多的數(shù)據(jù)。完成 1 和 2 的過程異常復雜,本書將對其中的細節(jié)作進一步的討論。我們將從傳統(tǒng)學習算法與神經(jīng)網(wǎng)絡中都起作用的通用策略入手,循序漸進地講解至最前沿的構(gòu)建深度學習系統(tǒng)的策略。``
2018-11-30 16:45:03

淺談深度學習之TensorFlow

神經(jīng)網(wǎng)絡深度學習的概念,但為了完整起見,我們將在這里介紹基礎知識,并探討 TensorFlow 的哪些特性使其成為深度學習的熱門選擇。神經(jīng)網(wǎng)絡是一個生物啟發(fā)式的計算和學習模型。像生物神經(jīng)元一樣,它們從其他
2020-07-28 14:34:04

用S3C2440訓練神經(jīng)網(wǎng)絡算法

嵌入式設備自帶專用屬性,不適合作為隨機性很強的人工智能深度學習訓練平臺。想象用S3C2440訓練神經(jīng)網(wǎng)絡算法都會頭皮發(fā)麻,PC上的I7、GPU上都很吃力,大部分都要依靠服務器來訓練。但是一旦算法訓練
2021-08-17 08:51:57

離散小波轉(zhuǎn)換(DWT)深度神經(jīng)網(wǎng)絡是什么

2018年全球第三大風力發(fā)電機制造商論文下載地址:https://arxiv.org/pdf/1902.05625v1.pdf論文代碼地址:https://github.com/BinhangYuan/WaveletFCNN需要簡單儲備的知識離散小波轉(zhuǎn)換(DWT)深度神經(jīng)網(wǎng)絡回顧離散小波變
2021-07-12 07:38:36

粒子群優(yōu)化模糊神經(jīng)網(wǎng)絡在語音識別中的應用

針對模糊神經(jīng)網(wǎng)絡訓練采用BP算法比較依賴于網(wǎng)絡的初始條件,訓練時間較長,容易陷入局部極值的缺點,利用粒子群優(yōu)化算法(PSO)的全局搜索性能,將PSO用于模糊神經(jīng)網(wǎng)絡訓練過程.由于基本PSO算法存在
2010-05-06 09:05:35

脈沖神經(jīng)網(wǎng)絡學習方式有哪幾種?

脈沖神經(jīng)網(wǎng)絡學習方式有哪幾種?
2021-10-26 06:58:01

解析深度學習:卷積神經(jīng)網(wǎng)絡原理與視覺實踐

解析深度學習:卷積神經(jīng)網(wǎng)絡原理與視覺實踐
2020-06-14 22:21:12

計算機視覺神經(jīng)網(wǎng)絡資料全集

CV之YOLOv3:深度學習之計算機視覺神經(jīng)網(wǎng)絡Yolov3-5clessses訓練自己的數(shù)據(jù)集全程記錄(第二次)——Jason niu
2018-12-24 11:52:25

請問Labveiw如何調(diào)用matlab訓練好的神經(jīng)網(wǎng)絡模型呢?

我在matlab中訓練好了一個神經(jīng)網(wǎng)絡模型,想在labview中調(diào)用,請問應該怎么做呢?或者labview有自己的神經(jīng)網(wǎng)絡工具包嗎?
2018-07-05 17:32:32

神經(jīng)網(wǎng)絡深度學習

微軟研究人員在深度神經(jīng)網(wǎng)絡(deep neural network)上取得突破, 使其在性能上能趕上目前最先進的語音識別技術(shù)。
2016-08-17 11:54:0647

神經(jīng)網(wǎng)絡深度學習》講義

神經(jīng)網(wǎng)絡深度學習》講義
2017-07-20 08:58:240

深度神經(jīng)網(wǎng)絡的壓縮和正則化剖析

利用深度壓縮和DSD訓練來提高預測精度。 深度神經(jīng)網(wǎng)絡已經(jīng)成為解決計算機視覺、語音識別和自然語言處理等機器學習任務的最先進的技術(shù)。盡管如此,深度學習算法是計算密集型和存儲密集型的,這使得它難以被部署
2017-11-16 13:11:351602

訓練神經(jīng)網(wǎng)絡的五大算法

神經(jīng)網(wǎng)絡模型的每一類學習過程通常被歸納為一種訓練算法。訓練的算法有很多,它們的特點和性能各不相同。問題的抽象人們把神經(jīng)網(wǎng)絡學習過程轉(zhuǎn)化為求損失函數(shù)f的最小值問題。一般來說,損失函數(shù)包括誤差項和正則
2017-11-16 15:30:5412889

如何估算深度神經(jīng)網(wǎng)絡的最優(yōu)學習率(附代碼教程)

學習率(learning rate)是調(diào)整深度神經(jīng)網(wǎng)絡最重要的超參數(shù)之一,本文作者Pavel Surmenok描述了一個簡單而有效的辦法來幫助你找尋合理的學習率。 我正在舊金山大學的 fast.ai
2017-12-07 11:05:422289

基于虛擬化的多GPU深度神經(jīng)網(wǎng)絡訓練框架

針對深度神經(jīng)網(wǎng)絡在分布式多機多GPU上的加速訓練問題,提出一種基于虛擬化的遠程多GPU調(diào)用的實現(xiàn)方法。利用遠程GPU調(diào)用部署的分布式GPU集群改進傳統(tǒng)一對一的虛擬化技術(shù),同時改變深度神經(jīng)網(wǎng)絡在分布式
2018-03-29 16:45:250

帶你了解深入深度學習的核心:神經(jīng)網(wǎng)絡

深度學習和人工智能是 2017 年的熱詞;2018 年,這兩個詞愈發(fā)火熱,但也更加容易混淆。我們將深入深度學習的核心,也就是神經(jīng)網(wǎng)絡
2018-04-02 09:47:099201

BP神經(jīng)網(wǎng)絡概述

BP 神經(jīng)網(wǎng)絡是一類基于誤差逆向傳播 (BackPropagation, 簡稱 BP) 算法的多層前饋神經(jīng)網(wǎng)絡,BP算法是迄今最成功的神經(jīng)網(wǎng)絡學習算法。現(xiàn)實任務中使用神經(jīng)網(wǎng)絡時,大多是在使用 BP
2018-06-19 15:17:1542819

深度學習神經(jīng)網(wǎng)絡學習是什么樣的?

怎樣理解非線性變換和多層網(wǎng)絡后的線性可分,神經(jīng)網(wǎng)絡學習就是學習如何利用矩陣的線性變換加激活函數(shù)的非線性變換。
2018-10-23 14:44:213741

快速了解神經(jīng)網(wǎng)絡深度學習的教程資料免費下載

本文檔的詳細介紹的是快速了解神經(jīng)網(wǎng)絡深度學習的教程資料免費下載主要內(nèi)容包括了:機器學習概述,線性模型,前饋神經(jīng)網(wǎng)絡,卷積神經(jīng)網(wǎng)絡,循環(huán)神經(jīng)網(wǎng)絡網(wǎng)絡優(yōu)化與正則化,記憶與注意力機制,無監(jiān)督學習,概率圖模型,玻爾茲曼機,深度信念網(wǎng)絡深度生成模型,深度強化學習
2019-02-11 08:00:0025

邊緣計算中深度神經(jīng)網(wǎng)絡剪枝壓縮的研究

深度神經(jīng)網(wǎng)絡與其他很多機器學習模型一樣,可分為訓練和推理兩個階段。訓練階段根據(jù)數(shù)據(jù)學習模型中的參數(shù)(對神經(jīng)網(wǎng)絡來說主要是網(wǎng)絡中的權(quán)重);推理階段將新數(shù)據(jù)輸入模型,經(jīng)過計算得出結(jié)果。
2020-03-27 15:50:172717

基于PyTorch的深度學習入門教程之訓練一個神經(jīng)網(wǎng)絡分類器

梯度計算 Part3:使用PyTorch構(gòu)建一個神經(jīng)網(wǎng)絡 Part4:訓練一個神經(jīng)網(wǎng)絡分類器 Part5:數(shù)據(jù)并行化 本文是關(guān)于Part4的內(nèi)容。 Part4:訓練一個神經(jīng)網(wǎng)絡分類器 前面已經(jīng)介紹
2021-02-15 09:47:001908

神經(jīng)網(wǎng)絡到卷積神經(jīng)網(wǎng)絡的原理

卷積神經(jīng)網(wǎng)絡 (Convolutional Neural Network, CNN) 是一種源于人工神經(jīng)網(wǎng)絡(Neural Network, NN)的深度機器學習方法,近年來在圖像識別領(lǐng)域取得了巨大
2021-03-25 09:45:217

綜述深度學習的卷積神經(jīng)網(wǎng)絡模型應用及發(fā)展

深度學習是機器學習和人工智能研究的最新趨勢,作為一個十余年來快速發(fā)展的嶄新領(lǐng)域,越來越受到研究者的關(guān)注。卷積神經(jīng)網(wǎng)絡(CNN)模型是深度學習模型中最重要的一種經(jīng)典結(jié)構(gòu),其性能在近年來深度學習任務
2021-04-02 15:29:0420

3小時學習神經(jīng)網(wǎng)絡深度學習課件下載

3小時學習神經(jīng)網(wǎng)絡深度學習課件下載
2021-04-19 09:36:550

深度學習中的卷積神經(jīng)網(wǎng)絡層級分解綜述

隨著深度學習的不斷發(fā)展,卷積神經(jīng)網(wǎng)絡(CNN)在目標檢測與圖像分類中受到研究者的廣泛關(guān)注。CNN從 Lenet5網(wǎng)絡發(fā)展到深度殘差網(wǎng)絡,其層數(shù)不斷增加。基于神經(jīng)網(wǎng)絡中“深度”的含義,在確保感受野相同
2021-05-19 16:11:005

NVIDIA GPU加快深度神經(jīng)網(wǎng)絡訓練和推斷

深度學習是推動當前人工智能大趨勢的關(guān)鍵技術(shù)。在 MATLAB 中可以實現(xiàn)深度學習的數(shù)據(jù)準備、網(wǎng)絡設計、訓練和部署全流程開發(fā)和應用。聯(lián)合高性能 NVIDIA GPU 加快深度神經(jīng)網(wǎng)絡訓練和推斷。
2022-02-18 13:31:441714

深度學習神經(jīng)網(wǎng)絡和函數(shù)

深度學習是機器學習的一個子集,它使用神經(jīng)網(wǎng)絡來執(zhí)行學習和預測。深度學習在各種任務中都表現(xiàn)出了驚人的表現(xiàn),無論是文本、時間序列還是計算機視覺。
2022-04-07 10:17:051380

深度學習與圖神經(jīng)網(wǎng)絡學習分享:Transformer

神經(jīng)網(wǎng)絡(CNN)、長短期記憶(LSTM)和自動編碼器)徹底改變了。曾有學者將本次人工智能浪潮的興起歸因于三個條件,分別是: ·?計算資源的快速發(fā)展(如GPU) ·?大量訓練數(shù)據(jù)的可用性 ·?深度學習從歐氏空間數(shù)據(jù)中提取潛在特征
2022-09-22 10:16:34969

什么是神經(jīng)網(wǎng)絡?什么是卷積神經(jīng)網(wǎng)絡

在介紹卷積神經(jīng)網(wǎng)絡之前,我們先回顧一下神經(jīng)網(wǎng)絡的基本知識。就目前而言,神經(jīng)網(wǎng)絡深度學習算法的核心,我們所熟知的很多深度學習算法的背后其實都是神經(jīng)網(wǎng)絡
2023-02-23 09:14:442256

基于進化卷積神經(jīng)網(wǎng)絡的屏蔽效能參數(shù)預測

進化神經(jīng)網(wǎng)絡是進化算法和深度學習兩者相結(jié)合的產(chǎn)物,在算法中神經(jīng)網(wǎng)絡的權(quán)值和閾值在初始種群個體染色體中,再用進化算法優(yōu)化權(quán)值和閾值,同時具有深度神經(jīng)網(wǎng)絡的自動構(gòu)建和學習訓練模型的優(yōu)勢。
2023-04-07 16:21:35203

淺析三種主流深度神經(jīng)網(wǎng)絡

來源:青榴實驗室 1、引子 深度神經(jīng)網(wǎng)絡(DNNs)最近在圖像分類或語音識別等復雜機器學習任務中表現(xiàn)出的優(yōu)異性能令人印象深刻。 在本文中,我們將了解深度神經(jīng)網(wǎng)絡的基礎知識和三個最流行神經(jīng)網(wǎng)絡:多層
2023-05-15 14:20:01550

訓練深度學習神經(jīng)網(wǎng)絡的常用5個損失函數(shù)

作者:Onepagecode來源:DeepHubIMBA神經(jīng)網(wǎng)絡訓練時的優(yōu)化首先是對模型的當前狀態(tài)進行誤差估計,然后為了減少下一次評估的誤差,需要使用一個能夠表示錯誤函數(shù)對權(quán)重進行更新,這個函數(shù)
2022-10-19 11:17:35477

淺析三種主流深度神經(jīng)網(wǎng)絡

來源:青榴實驗室1、引子深度神經(jīng)網(wǎng)絡(DNNs)最近在圖像分類或語音識別等復雜機器學習任務中表現(xiàn)出的優(yōu)異性能令人印象深刻。在本文中,我們將了解深度神經(jīng)網(wǎng)絡的基礎知識和三個最流行神經(jīng)網(wǎng)絡:多層神經(jīng)網(wǎng)絡
2023-05-17 09:59:19946

卷積神經(jīng)網(wǎng)絡原理:卷積神經(jīng)網(wǎng)絡模型和卷積神經(jīng)網(wǎng)絡算法

卷積神經(jīng)網(wǎng)絡原理:卷積神經(jīng)網(wǎng)絡模型和卷積神經(jīng)網(wǎng)絡算法 卷積神經(jīng)網(wǎng)絡(Convolutional Neural Network,CNN)是一種基于深度學習的人工神經(jīng)網(wǎng)絡,是深度學習技術(shù)的重要應用之
2023-08-17 16:30:30806

卷積神經(jīng)網(wǎng)絡模型訓練步驟

卷積神經(jīng)網(wǎng)絡模型訓練步驟? 卷積神經(jīng)網(wǎng)絡(Convolutional Neural Network, CNN)是一種常用的深度學習算法,廣泛應用于圖像識別、語音識別、自然語言處理等諸多領(lǐng)域。CNN
2023-08-21 16:42:00885

卷積神經(jīng)網(wǎng)絡深度神經(jīng)網(wǎng)絡的優(yōu)缺點 卷積神經(jīng)網(wǎng)絡深度神經(jīng)網(wǎng)絡的區(qū)別

深度神經(jīng)網(wǎng)絡是一種基于神經(jīng)網(wǎng)絡的機器學習算法,其主要特點是由多層神經(jīng)元構(gòu)成,可以根據(jù)數(shù)據(jù)自動調(diào)整神經(jīng)元之間的權(quán)重,從而實現(xiàn)對大規(guī)模數(shù)據(jù)進行預測和分類。卷積神經(jīng)網(wǎng)絡深度神經(jīng)網(wǎng)絡的一種,主要應用于圖像和視頻處理領(lǐng)域。
2023-08-21 17:07:361867

淺析深度神經(jīng)網(wǎng)絡壓縮與加速技術(shù)

深度神經(jīng)網(wǎng)絡深度學習的一種框架,它是一種具備至少一個隱層的神經(jīng)網(wǎng)絡。與淺層神經(jīng)網(wǎng)絡類似
2023-10-11 09:14:33363

Kaggle知識點:訓練神經(jīng)網(wǎng)絡的7個技巧

訓練神經(jīng)網(wǎng)絡的挑戰(zhàn)在訓練數(shù)據(jù)集的新示例之間取得平衡。七個具體的技巧,可幫助您更快地訓練出更好的神經(jīng)網(wǎng)絡模型。學習和泛化使用反向傳播設計和訓練網(wǎng)絡需要做出許多看似任
2023-12-30 08:27:54319

已全部加載完成