有人說互聯網開始由黃金時代轉入白銀時代,但AI可能與此相反,初創期的“白銀時代”已經向產業應用全面落地的“黃金時代”進發。
12月20日,國際數據公司(IDC)與百度AI產業研究中心(BACC)聯合發布《百度大腦領導力白皮書》。該白皮書按官方說法意在“洞察AI趨勢,激發產業新效能”,在開篇著重預測了2019年中國AI市場發展的十大趨勢。
解構該白皮書,我們發現,未來AI的發展在很多地方都將超出現有預期。
AI帶來的便捷,將比你想得還要極致
AI給產業和生活帶來了無與倫比的便捷,而未來AI帶來的便利將比你想象的還要更進一步。
1、部署AI,代碼都不想敲?那就點幾下鼠標吧
在云計算巨頭的支撐下,企業自己部署AI即將擺脫過去那種全靠碼農一行行代碼敲出模型的境況,用少量的引導代碼就能部署完整、可用、高效的算法模型。
不過,這還沒有結束,那些對AI需求相對固定、大眾化的企業,甚至可以“懶”到連少量代碼都不用敲,直接在專業開發平臺上點幾下鼠標就能實現AI部署自動化,像訪問WEB一樣便捷。由此,“普惠AI”將不再是一個概念。
類似的開發平臺不斷涌現,典型的如谷歌AutoML、百度EasyDL等。例如,在EasyDL上,用戶可以上傳圖片、音頻、文本等原始數據,系統可自動訓練出合適的模型,以圖像分類為例,訓練數據每類僅需20-100張圖片,最快10分鐘可訓練完畢。
2、不光人想變得更懶,機器也是
在AI之前IT信息化已經大行其道,財務、人力等的IT化讓人可以更“懶”更輕松。但是,過去的IT信息化本質上只是把人要做的事由機器去執行(進行了一定的流程重構)。
現在,智能化使得業務流程再度重構,某種程度上,機器也變得“更懶”,憑借AI模型只需要少量的步驟就能完成過去IT信息化系統要做的工作。
IDC預計至2023年,AI將取代50%的IT業務工作量,節省20%以上的運營成本。在已有的實踐案例中,太平洋保險和百度合作,在車險理賠環節采用AI技術(原有IT信息化支撐),每年預計將節省2-3億元運營成本。在車險理賠中,超過70%的車險理賠都是5000元以下的小額碰擦事故,而整體賠付金額只占到20%多,這十分適合AI的介入。
3、不能隨心所欲的智能交互都是偽命題
智能音箱現在十分流行,它代表人機交互界面的智能化趨向,即擺脫屏幕的束縛,讓交互通過語音的方式實現。
人和人之間獲取和交互信息,可通過說話、讀文字、對眼神、瀏覽照片、播放視頻等多種方式,這些,正是AI加持交互的最終目標。智能音箱只是開始,那些人與機器的交互,將通過AI實現“隨心所欲”不被時間、設備、場所所桎梏。
在這之前,至少要先擺脫屏幕。IDC預計到2023年,支持AI的人機交互接口將取代目前50%的基于屏幕的B2B和B2C的應用程序。在融合語音、圖像、視頻以及語義理解能力的AI能力不斷進化時,有理由相信,未來人與機器的交互將“心有靈犀”,而不是只靠冰冷的電容屏。
AI已經很聰明了?對,但它還能比你想象的聰明更多
除了產業與生活的便捷化,AI自己在也變得更“聰明”,甚至比我們想象的AI要聰明得多。
1、全能型選手馬上要成型了
李開復曾經對AI落地場景有過直白的觀點——金融行業會是最好、最先落地AI的場景。時至今日,Fintech領域的AI應用的確大放異彩,金融風控成為AI落地的典型產品。同時,在政府行業、互聯網行業,AI近年來的實踐也突飛猛進,城市治理、政務ATM背后都有AI的身影,連我們平時點個外賣,小哥如何配送背后都存在著AI路徑優化。
不止于此,按照IDC與百度的預測,除了上述三個行業的全面擴展,新零售、新制造、醫療領域也將成為AI市場的新增長點。這六大行業未來應用AI的3年復合增長率將超過30%。
例如,廣州婦女兒童醫療中心已于2年前開始全面探索AI的應用,包括在電子病歷系統中應用語音識別幫助撰寫,利用圖像識別、深度學習技術進行智能閱片輔助診斷,此外,還有病種分析、影像報告文書撰寫、智能導診、臨床輔助診斷等多個AI應用場景落地。
而這些,還只是AI的典型應用,在更多領域AI也在崛起。.
2、不只是知其然,還要知其所以然
過去及當前某些AI技術,還處在只能聽清、看清的“知其然”狀態,而信息到底想表達什么,AI其實是不懂的。就好像用AI語音聽寫一段話,它能準確地翻譯出來而不用用戶打字,但這句話究竟是什么用意AI并不知道,或者說,需要換用另一個AI算法來實現。
這顯然是不夠的。在IDC與百度發布的報告中,多模態計算會成為下一步的技術趨勢。
按百度高級副總裁王海峰的說法,機器智能不僅僅能夠“看清聽清”,還要能夠“看懂聽懂”。由此,融合視覺、語音、語義及情感的多模態計算成為必然,其結果,是AI更能深入理解信息背后的含義,進而更好地支撐各種應用。
例如,服務快消品行業的惠合科技接入百度EasyDL進行陳列審核,旗下e店佳應用上傳陳列視頻,EasyDL以定制化的物體檢測能力來識別商品是什么,同時還能推演出圖片中該類型商品的陳列究竟是否符合要求。目前,該圖像識別已經應用至40000家零售門店,這背后,就是多模態計算的價值呈現。
3、不管什么類型數據,只要有需求AI隨時“效命”
數據是AI算法模型的原料,一個算法對應一種結構化數據,要是數據不匹配算法便不能很好運行甚至出錯。
然而,很多企業的數字化轉型過程中,物理世界到虛擬數字多數時候并不能成為結構化數據,它們類型多樣、形式復雜。例如,制造業機械維保往往有零件或組件名稱、序列號、制造商信息、維護間隔、維護日期、分包商信息、手冊和文檔的鏈接、聯系人、保修和服務合同信息等非結構化數據,十分“豐富”。
這些非結構化數據帶來龐大的AI計算需求,在它們應用到AI算法之前,需要有多模型數據庫的支撐,什么都能往里邊塞,AI通過這樣的數據庫什么都能“算”。由此,在迫切需求的支撐下,所謂多模型數據庫開始走向市場,IDC預計到2023年,多模型數據庫的支出將達到NoSQL數據庫(一種當前興起的主流數據庫形態)支出的30%。
產業化、生態化,AI的玩法還要多幾分“意外”
從AI產業化、生態化的商業玩法上看,AI的趨勢也有些令人“意外”,過去某些玩法出現“反轉”。
1、人人AI不再是憧憬了
IDC預計,傳統行業中的大中型企業到2020年行業前15%的企業都將采用機器學習。這意味著,AI不再是高高在上的時髦技術,幾年內就就將“飛入尋常百姓家”,而越是傳統行業就越發積極,價值體現也更為明顯。
空調制造巨頭美的,用圖像識別技術通過監測空調外觀來保證空調出廠質量;專業服務制造業“檢測”的領邦智能,基于百度PaddlePaddle框架訓練深度學習模型,能夠高效準確地識別出問題零件及其種類,精度與人工檢測持平,成本節約15%以上;代工巨頭富士康更不用說,每年將收入的2%-5%用于AI的研究。目前,在模具生產中,富士康建立了基于深度學習的模型算法,實現刀具更換提前預警、自動補償,人力成本投入進一步減少。
目前中國正面臨著人工智能技術產業化以及傳統產業智能化的最佳機遇,能否抓住新機遇幫助企業建立核心競爭優勢取決于企業如何行動。白皮書指出,百度大腦3.0技術能力已進入“多模態深度語義理解”階段,已經開放能力超140項,每日調用次數超過4000億次。除了開放AI技術能力之外,在生態方面,百度大腦推出了燎原計劃,對合作伙伴提供商業落地所需的市場與運營資源,全力支持生態共贏 。在智能硬件和設備領域,百度大腦與芯片、嵌入式開發板、傳感器模組,以及閘機、門禁、機器人等廠商廣泛建立合作,幫助客戶獲得軟硬件適配更加整合的方案。百度大腦還創新性地推出了AI市場,為合作伙伴提供品牌營銷、產品評測、產品推薦等全套服務,旨在為合作伙伴帶來更多優質的訂單。同時,百度大腦的行業創新合伙人計劃在每個細分領域最多選擇3家企業,與百度大腦聯合設計、開發,共同打造行業解決方案,推動產品落地。
2、AI不再“深居云端”,邊緣也需要“AI一下”
由于百度云等云計算玩家的引領,過去云計算應用都偏向于云端部署。不過,隨著物聯網的深度發展,靠近數據源的端側設備的AI部署將盛行起來。
用大白話說,過去是數據統一匯總到云端統一運算,現在,那些終端設備(例如終端攝像頭、溫度傳感器等)將進行必要的計算(物品識別、人臉識別等),云端只負責統籌式的數據運算。
例如,百度云的“天工”就是針對智能物聯網的云平臺產品,其主要特點之一是可以實現“智能邊緣”——端計算、云管理、端云融合,在工業、物流、車聯網、家居、城市等物聯網領域都能夠被應用。騰訊云、阿里云等也有類似的產品,IDC預計至2022年,25%的物聯網端設備都將運行AI算法模型。
3、軟硬件的協作,這回不只有硬件說了算
過去,AI的計算是建立在已有的硬件基礎上,例如intel已經成型CPU,或者Nvidia本來用于畫圖或游戲的GPU。有什么硬件就用什么硬件,硬件決定軟件計算能力。
不過,這個狀況正在被改變,軟硬件的關系以后將逐步走向協同,軟件定義計算已成為芯片廠商的重要戰略之一,軟件及應用驅動AI專用芯片的階段也將到來。
7月,百度發布“昆侖”AI芯片,每秒運算260萬億次,這遠遠超過Nvidia的GPU進行AI運算的效能。顯然,“昆侖”的基礎架構建立在機器學習、AI應用趨勢的基礎之上。此外,華為在手機芯片中植入的NPU模塊,以及剛剛發布不久的Ascend 310獨立AI芯片,都遵循同樣的玩法。
4、所謂生態參與者越來越多,想做“平臺”挑戰越來越明顯
開放一直是AI大佬級企業做生態的標配,BAT皆是如此,只是開放的程度和姿態不一樣,有些啥都開放強調共贏,有些強調控制,有些只管投資收益。
做AI平臺生態過去就是籠絡一大批需要AI技術加持的企業,建立合作關系、輸出AI能力,誰能獲得的合作伙伴越多、類型越豐富,誰的生態就最“扎眼”。
然而,正如上文所說,AI技術正在向端側智能滲透,且軟硬件需要高度適配,于是平臺在整合生態的過程中,不僅僅需求合作伙伴的數量和種類,在產業鏈方面的要求更為嚴苛。以物聯網領域為例,平臺的AI生態不僅僅只有需求方(例如制造企業),還需要與傳感器、攝像頭、模組這些上游企業就AI的應用達成一致,一些時候芯片也需要改造或重建。
產業鏈上的細分產業的整合愈加重要,未來的AI生態平臺將是網狀結構的,百度等AI大佬要穩坐釣魚臺,挑戰會更大,而一旦這樣的生態建立起來,護城河也將更寬更深。
評論
查看更多