在如今的網(wǎng)絡(luò)時代,錯綜復(fù)雜的大數(shù)據(jù)和網(wǎng)絡(luò)環(huán)境,讓傳統(tǒng)信息處理理論、人工智能與人工神經(jīng)網(wǎng)絡(luò)都面臨巨大的挑戰(zhàn)。近些年,深度學(xué)習(xí)逐漸走進人們的視線,通過深度學(xué)習(xí)解決若干問題的案例越來越多。一些傳統(tǒng)的圖像
2024-01-11 10:51:32596 投入到了更高層次的智慧創(chuàng)造之中,減少了人力在工作中的投入,提高了工作效率,提高了成品率。近兩年,人工智能技術(shù)呈現(xiàn)日新月異的變化,我們的生活也隨之發(fā)生巨大改變。2018年,博鰲論壇上出現(xiàn)的人工智能翻譯機
2018-04-29 22:05:08
成為目前計算機視覺、模式識別、人工智能等領(lǐng)域最為重要的支撐技術(shù)之一。在此報告中,我將簡要回顧深度學(xué)習(xí)的主要技術(shù)及其在圖像識別、文字識別等方面一些最新研究進展,介紹基于Path Signature及深度
2017-03-22 17:16:00
人工神經(jīng)網(wǎng)絡(luò)是根據(jù)人的認識過程而開發(fā)出的一種算法。假如我們現(xiàn)在只有一些輸入和相應(yīng)的輸出,而對如何由輸入得到輸出的機理并不清楚,那么我們可以把輸入與輸出之間的未知過程看成是一個“網(wǎng)絡(luò)”,通過不斷地給
2008-06-19 14:40:42
人工神經(jīng)網(wǎng)絡(luò)(Artificial Neural Network,ANN)是一種類似生物神經(jīng)網(wǎng)絡(luò)的信息處理結(jié)構(gòu),它的提出是為了解決一些非線性,非平穩(wěn),復(fù)雜的實際問題。那有哪些辦法能實現(xiàn)人工神經(jīng)網(wǎng)絡(luò)呢?
2019-08-01 08:06:21
,但計算機則很難做到這一點。 大腦是由生物神經(jīng)元構(gòu)成的巨型網(wǎng)絡(luò),它在本質(zhì)上不同于計算機,是一種大規(guī)模的并行處理系統(tǒng),它具有學(xué)習(xí)、聯(lián)想記憶、綜合等能力,并有巧妙的信息處理方法。
2023-09-27 06:13:57
物體所作出的交互反應(yīng),是模擬人工智能的一條重要途徑。人工神經(jīng)網(wǎng)絡(luò)與人腦相似性主要表現(xiàn)在:①神經(jīng)網(wǎng)絡(luò)獲取的知識是從外界環(huán)境學(xué)習(xí)得來的;②各神經(jīng)元的連接權(quán),即突觸權(quán)值,用于儲存獲取的知識。神經(jīng)元是神經(jīng)網(wǎng)絡(luò)
2018-10-23 16:16:02
人工神經(jīng)網(wǎng)絡(luò)課件
2016-06-19 10:15:48
深度學(xué)習(xí)(Deep Learning)核心技術(shù)開發(fā)與應(yīng)用1,Deep Learning—循環(huán)神經(jīng)網(wǎng)絡(luò)2,Deep Learning—CNN應(yīng)用案例3,Deep Learning—對抗性生成網(wǎng)絡(luò)4
2018-09-05 10:22:34
不斷變化的,因此深度學(xué)習(xí)是人工智能AI的重要組成部分。可以說人腦視覺系統(tǒng)和神經(jīng)網(wǎng)絡(luò)。2、目標檢測、目標跟蹤、圖像增強、強化學(xué)習(xí)、模型壓縮、視頻理解、人臉技術(shù)、三維視覺、SLAM、GAN、GNN等。
2020-11-27 11:54:42
`我思故我在 亮出你的觀點自從類神經(jīng)網(wǎng)絡(luò)算法可以用強大的運算能力加以模擬之后,強人工智能才開始出現(xiàn)。即便如此,以目前 CPU 的運算能力來講,模擬類神經(jīng)網(wǎng)絡(luò)算法的代價非常之大,于是有人想到了用
2017-08-23 15:42:16
+醫(yī)療市場規(guī)模持續(xù)增長
由廣州市婦女兒童醫(yī)療中心教授夏慧敏、加州大學(xué)圣地亞哥分校教授張康等專家領(lǐng)銜的醫(yī)療數(shù)據(jù)智能化應(yīng)用團隊,聯(lián)合人工智能研究和轉(zhuǎn)化機構(gòu)研發(fā)出“輔診熊”人工智能診斷平臺,通過自動
2019-02-24 09:29:57
也被稱為深度神經(jīng)網(wǎng)絡(luò),因為決策樹的嵌套層次結(jié)構(gòu)的層數(shù)是數(shù)以百萬計的數(shù)據(jù)節(jié)點。讓你的機器學(xué)習(xí)人工智能認證計數(shù)自從第一次工業(yè)革命以來,機器就一直驅(qū)動著我們的生活方式,使之成為當今工業(yè)4.0的趨勢。因此,在
2018-08-27 10:16:55
在未來的某個時候,人們必定能夠相對自如地運用人工智能,安全地駕車出行。這個時刻何時到來我無法預(yù)見;但我相信,彼時“智能”會顯現(xiàn)出更“切實”的意義。與此同時,通過深度學(xué)習(xí)方法,人工智能的實際應(yīng)用能夠在汽車安全系統(tǒng)的發(fā)展進步中發(fā)揮重要的作用。而這些系統(tǒng)遠不止僅供典型消費者群體掌握和使用。
2019-08-06 08:42:40
笨蛋”,所以未來教育是尊重學(xué)生個性和未來發(fā)展的教育。在人工智能技術(shù)的支撐下,我們能夠超越社會的個性化、小規(guī)模的教育,能夠超越工業(yè)化社會大規(guī)模、非個性化的教育,能夠建立起既可以實現(xiàn)大規(guī)模的覆蓋,又可
2020-12-14 11:30:31
點擊上方“藍字”,關(guān)注我們,感謝!人工智能(AI)以及利用神經(jīng)網(wǎng)絡(luò)的深度學(xué)習(xí)是實現(xiàn)高級駕駛輔助系統(tǒng)(ADAS)和更高程度車輛自主性的強大技術(shù)。隨著人工智能研究的快速發(fā)展,設(shè)計人員正面臨激烈的競爭
2021-12-17 08:17:41
據(jù)相關(guān)招聘機構(gòu)數(shù)據(jù)顯示,2018年AI領(lǐng)域仍然是大部分資深技術(shù)人才轉(zhuǎn)崗的首選目標,在人才最緊缺的前十大職位中,時下最火的大數(shù)據(jù)、人工智能、算法類崗位占據(jù)半壁江山。據(jù)調(diào)查指出,2017年技術(shù)研發(fā)類崗位
2018-03-29 15:46:26
。盡管“人工智能”尚未完成達到人的智能狀態(tài),但是在眾多領(lǐng)域,機器人已經(jīng)替代了人的部分工作,家用、商用機器人、智能機器人平臺的發(fā)展為“人工智能”變身“智能人工”提供了可能。在技術(shù)個性日新月異的互聯(lián)網(wǎng)領(lǐng)域
2015-10-21 12:03:58
` 本帖最后由 cdhqyj 于 2020-10-23 11:09 編輯
人工智能的應(yīng)用領(lǐng)域有哪些?人工智能的定義可以分為兩部分,即“人工”和“智能”,應(yīng)用領(lǐng)域非常廣泛。麥肯錫全球研究所一項研究
2020-10-23 11:07:34
人工智能是近三年來最受關(guān)注的核心基礎(chǔ)技術(shù),將深刻的改造各個傳統(tǒng)行業(yè)。人工智能在圖像識別、語音識別領(lǐng)域的應(yīng)用自2017年來高速發(fā)展,是人工智能最熱點的兩項落地應(yīng)用。手把手教你設(shè)計人工智能芯片及系統(tǒng)(全
2019-09-11 11:52:08
。對于人工智能用例在當前物聯(lián)網(wǎng)環(huán)境中變?yōu)楝F(xiàn)實,必須滿足三個條件:非常大的真實數(shù)據(jù)集具有重要處理能力的硬件架構(gòu)和環(huán)境開發(fā)新的強大算法和人工神經(jīng)網(wǎng)絡(luò)(ANN)以充分利用上述內(nèi)容很明顯,后兩種要求相互依賴,并且
2019-05-29 10:46:39
。?oè???oè?????o?¤§?????¨é??¤???o??? 介紹深度學(xué)習(xí)是一個令人難以置信的靈活且強大的技術(shù),但運行的神經(jīng)網(wǎng)絡(luò)可以在計算方面需要非常大的電力,且對磁盤空間也有要求。這通常不是云空間能夠
2018-05-07 16:02:21
多層感知機 深度神經(jīng)網(wǎng)絡(luò)in collaboration with Hsu Chung Chuan, Lin Min Htoo, and Quah Jia Yong. 與許忠傳,林敏濤和華佳勇合作
2021-07-12 06:35:22
第1章 概述 1.1 人工神經(jīng)網(wǎng)絡(luò)研究與發(fā)展 1.2 生物神經(jīng)元 1.3 人工神經(jīng)網(wǎng)絡(luò)的構(gòu)成 第2章人工神經(jīng)網(wǎng)絡(luò)基本模型 2.1 MP模型 2.2 感知器模型 2.3 自適應(yīng)線性
2012-03-20 11:32:43
近年來,深度學(xué)習(xí)的繁榮,尤其是神經(jīng)網(wǎng)絡(luò)的發(fā)展,顛覆了傳統(tǒng)機器學(xué)習(xí)特征工程的時代,將人工智能的浪潮推到了歷史最高點。然而,盡管各種神經(jīng)網(wǎng)絡(luò)模型層出不窮,但往往模型性能越高,對超參數(shù)的要求也越來越嚴格
2019-09-11 11:52:14
基于深度學(xué)習(xí)的神經(jīng)網(wǎng)絡(luò)算法
2019-05-16 17:25:05
在科技日新月異的當今社會,5G和AI都是非常火爆的概念。隨著5G的商用,5G技術(shù)在社會的普及程度逐步提高。那AI又是什么呢?AI應(yīng)用又會給人們帶來哪些改變?AI是Artificial
2021-12-20 06:42:13
,神經(jīng)網(wǎng)絡(luò)之父Hiton始終堅持計算機能夠像人類一樣思考,用直覺而非規(guī)則。盡管這一觀點被無數(shù)人質(zhì)疑過無數(shù)次,但隨著數(shù)據(jù)的不斷增長和數(shù)據(jù)挖掘技術(shù)的不斷進步,神經(jīng)網(wǎng)絡(luò)開始在語音和圖像等方面超越基于邏輯的人工智能
2018-06-05 10:11:50
大型DNN工作負載的大規(guī)模計算需求,并為大規(guī)模系統(tǒng)提供前所未有的效率:高迪訓(xùn)練處理器。在訓(xùn)練過程中,神經(jīng)網(wǎng)絡(luò)的內(nèi)部參數(shù)會針對目標應(yīng)用進行調(diào)整和優(yōu)化。一個典型的網(wǎng)絡(luò)包含數(shù)十億個內(nèi)部參數(shù),所有這些參數(shù)在
2023-08-04 06:48:48
隨著機器學(xué)習(xí),神經(jīng)網(wǎng)絡(luò)和人工智能
2017-12-13 09:13:10
人工智能打發(fā)展是算法優(yōu)先于實際應(yīng)用。近幾年隨著人工智能的不斷普及,許多深度學(xué)習(xí)算法涌現(xiàn),從最初的卷積神經(jīng)網(wǎng)絡(luò)(CNN)到機器學(xué)習(xí)算法的時代。由于應(yīng)用環(huán)境的差別衍生出不同的學(xué)習(xí)算法:線性回歸,分類與回歸樹
2023-02-17 11:00:15
`本篇主要介紹:人工神經(jīng)網(wǎng)絡(luò)的起源、簡單神經(jīng)網(wǎng)絡(luò)模型、更多神經(jīng)網(wǎng)絡(luò)模型、機器學(xué)習(xí)的步驟:訓(xùn)練與預(yù)測、訓(xùn)練的兩階段:正向推演與反向傳播、以TensorFlow + Excel表達訓(xùn)練流程以及AI普及化教育之路。`
2020-11-05 17:48:39
學(xué)習(xí)和認知科學(xué)領(lǐng)域,是一種模仿生物神經(jīng)網(wǎng)絡(luò)(動物的中樞神經(jīng)系統(tǒng),特別是大腦)的結(jié)構(gòu)和功能的數(shù)學(xué)模型或計算模型,用于對函數(shù)進行估計或近似。神經(jīng)網(wǎng)絡(luò)由大量的人工神經(jīng)元聯(lián)結(jié)進行計算。大多數(shù)情況下人工神經(jīng)網(wǎng)絡(luò)
2019-03-03 22:10:19
電子發(fā)燒友總結(jié)了以“神經(jīng)網(wǎng)絡(luò)”為主題的精選干貨,今后每天一個主題為一期,希望對各位有所幫助!(點擊標題即可進入頁面下載相關(guān)資料)人工神經(jīng)網(wǎng)絡(luò)算法的學(xué)習(xí)方法與應(yīng)用實例(pdf彩版)卷積神經(jīng)網(wǎng)絡(luò)入門資料MATLAB神經(jīng)網(wǎng)絡(luò)30個案例分析《matlab神經(jīng)網(wǎng)絡(luò)應(yīng)用設(shè)計》深度學(xué)習(xí)和神經(jīng)網(wǎng)絡(luò)
2019-05-07 19:18:14
學(xué)習(xí)簡史深度學(xué)習(xí)的基本元素感知器學(xué)習(xí)前饋神經(jīng)網(wǎng)絡(luò)簡介前饋神經(jīng)網(wǎng)絡(luò)實例每個章節(jié)的頁面可以通過左右箭頭來跳轉(zhuǎn)到上一章節(jié)或者下一章節(jié),向下滾動即可繼續(xù)查看本章節(jié)內(nèi)容。第1章 體驗人工智能你有沒有好奇過人工智能
2019-07-25 16:07:04
,是模擬人工智能的一條重要途徑。人工神經(jīng)網(wǎng)絡(luò)與人腦相似性主要表現(xiàn)在:
①神經(jīng)網(wǎng)絡(luò)獲取的知識是從外界環(huán)境學(xué)習(xí)得來的;
②各神經(jīng)元的連接權(quán),即突觸權(quán)值,用于儲存獲取的知識。
神經(jīng)元是神經(jīng)網(wǎng)絡(luò)的基本處理單元,它是
2023-09-13 16:41:18
人工智能的發(fā)展正在經(jīng)歷著日新月異的變化,從德國工業(yè)4.0的智能制造時代開始,全球的人工智能應(yīng)用進入了一個全新的發(fā)展階段,作為人工智能技術(shù)的重要載體,機器人技術(shù)被廣泛提及研究,在我們?nèi)粘I睢⒐I(yè)生產(chǎn)
2017-10-17 10:25:30
翻譯軟件都用了深度學(xué)習(xí)技術(shù),利用神經(jīng)網(wǎng)絡(luò)改進關(guān)鍵模塊,通用性大大地增強,南北差異再也不是問題了! ◆◆◆ 可以看出,深度學(xué)習(xí)不僅作用于圖像,還可以延伸到更廣的領(lǐng)域。 隨著學(xué)界對深度學(xué)習(xí)研究越來越
2018-05-11 11:43:14
是說在云端通過聯(lián)網(wǎng),在數(shù)據(jù)中心的大規(guī)模的計算去實現(xiàn)人工智能,而是說在本地計算,在不聯(lián)網(wǎng)的情況下面實時的做環(huán)境感知,做人機交互,做決策控制。大家想想看,尤其是在自動駕駛這樣一個場景下面,如果突然一個
2021-10-28 08:43:08
。人工智能,在目前的關(guān)鍵時刻,是關(guān)于神經(jīng)網(wǎng)絡(luò)的。目前,人工智能使用與典型計算機相同的 CMOS 硬件。目前的人工智能專注于開發(fā)注入類人智能的算法功能。該學(xué)科的重點是通過人工神經(jīng)網(wǎng)絡(luò)(ANN)復(fù)制人類智能
2022-03-22 11:19:16
簡單理解LSTM神經(jīng)網(wǎng)絡(luò)
2021-01-28 07:16:57
通信技術(shù)發(fā)展的日新月異,對深度覆蓋的要求越來越高.什么是TD-LTE深度覆蓋解決方案?這些方案有什么優(yōu)勢?
2019-08-14 07:35:24
取得了良好的性能。可以說,DNN其實是一種架構(gòu),是指深度超過幾個相似層的神經(jīng)網(wǎng)絡(luò)結(jié)構(gòu),一般能夠達到幾十層,或者由一些復(fù)雜的模塊組成。ILSVRC(ImageNet大規(guī)模視覺識別挑戰(zhàn)賽)每年都不斷被深度
2018-05-08 15:57:47
卷積神經(jīng)網(wǎng)絡(luò)模型發(fā)展及應(yīng)用轉(zhuǎn)載****地址:http://fcst.ceaj.org/CN/abstract/abstract2521.shtml深度學(xué)習(xí)是機器學(xué)習(xí)和人工智能研究的最新趨勢,作為一個
2022-08-02 10:39:39
抽象人工智能 (AI) 的世界正在迅速發(fā)展,人工智能越來越多地支持以前無法實現(xiàn)或非常難以實現(xiàn)的應(yīng)用程序。本系列文章解釋了卷積神經(jīng)網(wǎng)絡(luò) (CNN) 及其在 AI 系統(tǒng)中機器學(xué)習(xí)中的重要性。CNN 是從
2023-02-23 20:11:10
語言使用,數(shù)學(xué)庫、數(shù)據(jù)結(jié)構(gòu)及相關(guān)算法,深入學(xué)習(xí)AI算法模型訓(xùn)練、分析,神經(jīng)網(wǎng)絡(luò)、機器學(xué)習(xí)、深度學(xué)習(xí)等因此,為了幫助大家更好的入門學(xué)習(xí)AI人工智能,包括:Python語法編程、數(shù)據(jù)結(jié)構(gòu)與算法、機器學(xué)習(xí)
2019-11-27 12:10:39
最近在看人工智能神經(jīng)網(wǎng)絡(luò)存算一體這些方面的ADC設(shè)計方向,貌似跟一般的ADC方向是一樣的,都是希望朝著低功耗高精度和高速發(fā)展,在這幾個或其他特殊的方向各位有什么見解呢?
2021-06-24 08:17:34
基于RK3399ProD的人工智能開發(fā)板深度學(xué)習(xí)課程分享
2022-02-11 08:54:59
FPGA 上實現(xiàn)卷積神經(jīng)網(wǎng)絡(luò) (CNN)。CNN 是一類深度神經(jīng)網(wǎng)絡(luò),在處理大規(guī)模圖像識別任務(wù)以及與機器學(xué)習(xí)類似的其他問題方面已大獲成功。在當前案例中,針對在 FPGA 上實現(xiàn) CNN 做一個可行性研究
2019-06-19 07:24:41
如何用stm32cube.ai簡化人工神經(jīng)網(wǎng)絡(luò)映射?如何使用stm32cube.ai部署神經(jīng)網(wǎng)絡(luò)?
2021-10-11 08:05:42
不確定因素影響,并且隨著可編程片上系統(tǒng)SoPC和大規(guī)模現(xiàn)場可編程門陣列FPGA的出現(xiàn),為神經(jīng)網(wǎng)絡(luò)控制器的硬件實現(xiàn)提供了新的載體。
2019-08-12 06:25:35
巡線智能車控制中的CNN網(wǎng)絡(luò)有何應(yīng)用?嵌入式單片機中的神經(jīng)網(wǎng)絡(luò)該怎樣去使用?如何利用卷積神經(jīng)網(wǎng)絡(luò)去更好地控制巡線智能車呢?
2021-12-21 07:47:24
已經(jīng)有很多關(guān)于將人工智能用于日益智能的車輛的文章。但是,您如何將在服務(wù)器群上開發(fā)的神經(jīng)網(wǎng)絡(luò) (NN) 壓縮到量產(chǎn)汽車中資源受限的嵌入式硬件中呢?本文探討了我們應(yīng)該如何授權(quán)汽車生產(chǎn) AI 研發(fā)工程師在
2021-12-23 06:30:50
人工智能下面有哪些機器學(xué)習(xí)分支?如何用卷積神經(jīng)網(wǎng)絡(luò)(CNN)方法去解決機器學(xué)習(xí)監(jiān)督學(xué)習(xí)下面的分類問題?
2021-06-16 08:09:03
神經(jīng)網(wǎng)絡(luò)(Neural Networks)是人工神經(jīng)網(wǎng)絡(luò)(Ar-tificial Neural Networks)的簡稱,是當前的研究熱點之一。人腦在接受視覺感官傳來的大量圖像信息后,能迅速做出反應(yīng)
2019-08-08 06:11:30
人工神經(jīng)網(wǎng)絡(luò)在AI中具有舉足輕重的地位,除了找到最好的神經(jīng)網(wǎng)絡(luò)模型和訓(xùn)練數(shù)據(jù)集之外,人工神經(jīng)網(wǎng)絡(luò)的另一個挑戰(zhàn)是如何在嵌入式設(shè)備上實現(xiàn)它,同時優(yōu)化性能和功率效率。 使用云計算并不總是一個選項,尤其是當
2021-11-09 08:06:27
指標通常無法滿足人工智能應(yīng)用的需求。隨著人工智能芯片的研發(fā)成功,搭載人工智能芯片的嵌入式神經(jīng)網(wǎng)絡(luò)處理器(NPU)能夠以低功耗進行高速運算,于是端側(cè)智能得以迅速發(fā)展并形成一個繁榮的應(yīng)用生態(tài)。端側(cè)智能
2023-02-16 14:24:49
應(yīng)用人工神經(jīng)網(wǎng)絡(luò)模擬污水生物處理(1.浙江工業(yè)大學(xué)建筑工程學(xué)院, 杭州 310014; 2.鎮(zhèn)江水工業(yè)公司排水管理處,鎮(zhèn)江 212003)摘要:針對復(fù)雜的非線性污水生物處理過程,開發(fā)了徑向基函數(shù)的人工
2009-08-08 09:56:00
本文提出了一個基于FPGA 的信息處理的實例:一個簡單的人工神經(jīng)網(wǎng)絡(luò)應(yīng)用Verilog 語言描述,該數(shù)據(jù)流采用模塊化的程序設(shè)計,并考慮了模塊間數(shù)據(jù)傳輸信號同 步的問題,有效地解決了人工神經(jīng)網(wǎng)絡(luò)并行數(shù)據(jù)處理的問題。
2021-05-06 07:22:07
近年來,隨著人工智能的進一步發(fā)展創(chuàng)新,新技術(shù)持續(xù)獲得突破性進展,呈現(xiàn)出深度學(xué)習(xí)、跨界融合、人機協(xié)同、群智開放、自主操控等以應(yīng)用為導(dǎo)向的新特征。加強新一代人工智能技術(shù)的前瞻預(yù)判,準確把握全球
2019-09-11 11:51:49
的這些龐大的數(shù)據(jù)。當時AI研究的普遍方向也與他們相反,人們都在尋找捷徑,直接模擬出行為而不是模仿大腦的運作。隨著計算能力的提升和算法的改進,今天,神經(jīng)網(wǎng)絡(luò)和深度學(xué)習(xí)已經(jīng)成為人工智能領(lǐng)域最具吸引力的流派
2015-12-23 14:21:58
的智能——但是我們已經(jīng)看到了一條充滿潛力的道路。目前人工智能(AI)已經(jīng)發(fā)展為一系列技術(shù):機器學(xué)習(xí)、深度學(xué)習(xí)、卷積神經(jīng)網(wǎng)絡(luò)(CNN)等,但是無論我們怎么命名,它們都需要組合起來搭建一個更加智能的機器
2018-05-22 09:54:43
求大神給一個人工神經(jīng)網(wǎng)絡(luò)與遺傳算法的源代碼。
2016-04-19 17:15:29
1、加速神經(jīng)網(wǎng)絡(luò)的必備開源項目 到底純FPGA適不適合這種大型神經(jīng)網(wǎng)絡(luò)的設(shè)計?這個問題其實我們不適合回答,但是FPGA廠商是的實際操作是很有權(quán)威性的,現(xiàn)在不論是Intel還是Xilinx都沒有在
2022-10-24 16:10:50
隨著阿法狗大戰(zhàn)李世石,人工智能引發(fā)越來越多的關(guān)注。百度總裁張亞勤28日表示,百度長期堅持技術(shù)創(chuàng)新,2015年研發(fā)投入超過100億元,目前在人工智能領(lǐng)域已有重大突破。 張亞勤在天津夏季達沃斯論壇
2016-07-01 15:22:41
識別、機器學(xué)習(xí)、神經(jīng)網(wǎng)絡(luò)技術(shù)等人工智能領(lǐng)域的熱點都在快速演進。會議亮點● 150位業(yè)內(nèi)人士與會,共同探討業(yè)界熱點與設(shè)計難點● 知名專家介紹如何尋找AI應(yīng)用新場景● 知名大公司分享AI最前沿研究
2017-12-22 13:59:14
解析深度學(xué)習(xí):卷積神經(jīng)網(wǎng)絡(luò)原理與視覺實踐
2020-06-14 22:21:12
隱藏技術(shù): 一種基于前沿神經(jīng)網(wǎng)絡(luò)理論的新型人工智能處理器 Copy東京理工大學(xué)的研究人員開發(fā)了一種名為“ Hiddenite”的新型加速器芯片,該芯片可以在計算稀疏“隱藏神經(jīng)網(wǎng)絡(luò)”時達到最高的精度
2022-03-17 19:15:13
人工神經(jīng)網(wǎng)絡(luò)導(dǎo)論依照簡明易懂、便于軟件實現(xiàn)、鼓勵探索的原則介紹人工神經(jīng)網(wǎng)絡(luò)。內(nèi)容包括:智能系統(tǒng)描述模型、人工神經(jīng)網(wǎng)絡(luò)方法的特點;基本人工神經(jīng)元模型,人工神經(jīng)
2009-01-13 14:58:5755 人工神經(jīng)網(wǎng)絡(luò),人工神經(jīng)網(wǎng)絡(luò)是什么意思
神經(jīng)網(wǎng)絡(luò)是一門活躍的邊緣性交叉學(xué)科.研究它的發(fā)展過程和前沿問題,具有重要的理論意義
2010-03-06 13:39:013296 隨著消費電子、汽車電子、工業(yè)控制等越來越多的應(yīng)用引入人工智能(AI),人工智能面臨著前所未有的快速發(fā)展,深度學(xué)習(xí)、神經(jīng)網(wǎng)絡(luò)等技術(shù)迎來了發(fā)展高潮。神經(jīng)網(wǎng)絡(luò)越大,需要的計算量就越大,傳統(tǒng)的VPU雖然
2018-07-16 11:17:00459 摘在圖像分類任務(wù)中,為了獲得更高的分類精度,需要對圖像提取不同層次的特征信息.深度學(xué)習(xí)被越來越多的應(yīng)用于大規(guī)模圖像分類任務(wù)中.本文提出了一種基于深度卷積神經(jīng)網(wǎng)絡(luò)的。可應(yīng)用于大規(guī)模圖像分類的深度學(xué)習(xí)
2017-12-15 13:58:513 人工智能機器學(xué)習(xí)有關(guān)算法內(nèi)容,人工智能之機器學(xué)習(xí)主要有三大類:1)分類;2)回歸;3)聚類。今天我們重點探討一下卷積神經(jīng)網(wǎng)絡(luò)(CNN)算法。 前言: 人工智能 機器學(xué)習(xí)有關(guān)算法內(nèi)容,請參見公眾
2018-06-18 10:15:004809 最近很長的一段時間,人工智能的熱度都維持在一定的高度。但是大家在關(guān)注或研究人工智能領(lǐng)域的時候,總是會遇到這樣的幾個關(guān)鍵詞:深度學(xué)習(xí)、機器學(xué)習(xí)、神經(jīng)網(wǎng)絡(luò)。那他們之間到底是什么樣的關(guān)系呢?
2018-07-05 16:27:001333 由 Demi 于 星期四, 2018-09-06 09:33 發(fā)表 現(xiàn)在提到“神經(jīng)網(wǎng)絡(luò)”和“深度神經(jīng)網(wǎng)絡(luò)”,會覺得兩者沒有什么區(qū)別,神經(jīng)網(wǎng)絡(luò)還能不是“深度”(deep)的嗎?我們常用
2018-09-06 20:48:01557 焦李成教授在報告中回顧了深度神經(jīng)網(wǎng)絡(luò)發(fā)展歷程,闡述了復(fù)雜影像的智能解譯與識別問題,并激勵大家在人工智能領(lǐng)域勇攀學(xué)術(shù)高峰。
2018-11-26 11:16:2112272 近幾年,深度學(xué)習(xí)在人工智能、機器學(xué)習(xí)中取得了飛躍式的突破,特別是在語音識別和圖像識別等領(lǐng)域[1-3]。其中,深度神經(jīng)網(wǎng)絡(luò)由于結(jié)構(gòu)類似于生物神經(jīng)網(wǎng)絡(luò),因此擁有高效、精準抽取信息深層隱含特征的能力和能夠
2019-02-05 11:21:002341 什么是人工智能神經(jīng)網(wǎng)絡(luò),大腦的結(jié)構(gòu)越簡單,那么智商就越低。單細胞生物是智商最低的了。人工神經(jīng)網(wǎng)絡(luò)也是一樣的,網(wǎng)絡(luò)越復(fù)雜它就越強大,所以我們需要深度神經(jīng)網(wǎng)絡(luò)。這里的深度是指層數(shù)多,層數(shù)越多那么構(gòu)造的神經(jīng)網(wǎng)絡(luò)就越復(fù)雜。
2019-07-04 11:30:243713 在人工智能深度學(xué)習(xí)技術(shù)中,有一個很重要的概念就是卷積神經(jīng)網(wǎng)絡(luò) CNN(Convolutional Neural Networks)。
2019-11-02 11:23:433470 人工智能系統(tǒng)所面臨的兩大安全問題的根源在于深度神經(jīng)網(wǎng)絡(luò)的不可解釋性。深度神經(jīng)網(wǎng)絡(luò)可解釋性定義為可判讀(interpretability)和可理解(explainability)兩方面的內(nèi)容。可判讀性,即深度神經(jīng)網(wǎng)絡(luò)輸出可判讀
2020-03-27 15:56:182632 談及人工智能,就會涉及到人工神經(jīng)網(wǎng)絡(luò)。人工神經(jīng)網(wǎng)絡(luò)是現(xiàn)代人工智能的重要分支,它是一個為人工智能提供動力,可以模仿動物神經(jīng)網(wǎng)絡(luò)行為特征,進行分布式并行信息處理的系統(tǒng)。
2020-07-27 10:25:37683 深度神經(jīng)網(wǎng)絡(luò)是一種使用數(shù)學(xué)模型處理圖像以及其他數(shù)據(jù)的多層系統(tǒng),而且目前已經(jīng)發(fā)展為人工智能的重要基石。
2020-11-25 09:50:172635 隨著社會的發(fā)展,人工智能的應(yīng)用日新月異,有一種聲音伴隨而來:人工智能會讓我們失業(yè)嗎?
2020-12-15 17:18:392636 量子態(tài),其物理性質(zhì)與典型應(yīng)用場景,最新進展,以及面臨的挑戰(zhàn)。 01 ? ?引 言? ?? ? ? 人工智能主要有三條發(fā)展路線:符號主義、連接主義與行為主義[1]。人工神經(jīng)網(wǎng)絡(luò)是連接主義的基石,也是最近幾年深度學(xué)習(xí)取得突破進展的關(guān)鍵
2021-03-02 09:56:452745 深度神經(jīng)網(wǎng)絡(luò)具有非線性非凸、多層隱藏結(jié)構(gòu)、特征矢量化、海量模型參數(shù)等特點,但弱解釋性是限制其理論發(fā)展和實際應(yīng)用的巨大障礙,因此,深度神經(jīng)網(wǎng)絡(luò)解釋方法成為當前人工智能領(lǐng)域研究的前沿熱點。針對軍事金融
2021-03-21 09:48:2318 人工智能-BP神經(jīng)網(wǎng)絡(luò)算法的簡單實現(xiàn)說明。
2021-05-25 11:30:1612 神經(jīng)網(wǎng)絡(luò)(MLP),卷積神經(jīng)網(wǎng)絡(luò)(CNN)和遞歸神經(jīng)網(wǎng)絡(luò)(RNN)。 2、什么是深度神經(jīng)網(wǎng)絡(luò) 機器學(xué)習(xí)是一門多領(lǐng)域交叉學(xué)科,專門研究計算機怎樣模擬或?qū)崿F(xiàn)人類的學(xué)習(xí)行為,以獲取新的知識或技能,重新組織已有的知識結(jié)構(gòu)使之不斷改善自身的性能。它是人工
2023-05-15 14:20:01550 一。其主要應(yīng)用領(lǐng)域在計算機視覺和自然語言處理中,最初是由Yann LeCun等人在20世紀80年代末和90年代初提出的。隨著近年來計算機硬件性能的提升和深度學(xué)習(xí)技術(shù)的發(fā)展,CNN在很多領(lǐng)域取得了重大的進展和應(yīng)用。 一、卷積神經(jīng)網(wǎng)絡(luò)模型 (一)卷積層(Convolutional Layer) 卷積神經(jīng)網(wǎng)絡(luò)最
2023-08-17 16:30:30806 深度神經(jīng)網(wǎng)絡(luò)是一種基于神經(jīng)網(wǎng)絡(luò)的機器學(xué)習(xí)算法,其主要特點是由多層神經(jīng)元構(gòu)成,可以根據(jù)數(shù)據(jù)自動調(diào)整神經(jīng)元之間的權(quán)重,從而實現(xiàn)對大規(guī)模數(shù)據(jù)進行預(yù)測和分類。卷積神經(jīng)網(wǎng)絡(luò)是深度神經(jīng)網(wǎng)絡(luò)的一種,主要應(yīng)用于圖像和視頻處理領(lǐng)域。
2023-08-21 17:07:361868 Network, NN)或神經(jīng)計算(Neurocomputing)。ANN具有自適應(yīng)學(xué)習(xí)、自適應(yīng)處理能力和良好的非線性建模能力,可應(yīng)用于模式識別、分類、預(yù)測、辨識、控制等領(lǐng)域,并在人工智能、機器學(xué)習(xí)等領(lǐng)域發(fā)揮
2023-08-22 16:45:182941 從理論分析入手把握大規(guī)模神經(jīng)網(wǎng)絡(luò)優(yōu)化的規(guī)律,可以指導(dǎo)實踐中的超參數(shù)選擇。反過來,實踐中的超參數(shù)選擇也可以指導(dǎo)理論分析。本篇文章聚焦于大語言模型,介紹從 GPT 以來大家普遍使用的訓(xùn)練超參數(shù)的變化
2023-12-10 21:45:03553
評論
查看更多