首位跨欄者現身:百度大腦的智能對話應用飛躍
我們對于AI應用的追逐過程如同跨欄,此時此刻回頭看看,會發現“計算”、“感知”和“決策”這些橫欄,都已經在我們身后。如今我們已經可以熟練的用語音識別和圖像識別來感知信息,再通過機器學習對海量數據的處理來給出結論。
如果問下一道橫在我們面前有待跨越的橫欄是什么,想必就是意味著“溝通”的智能對話技術了。
橫欄在前:智能對話技術跨越的前一秒
建立在語音識別和語音生成等的NLP技術上,人機對話之間的簡單對話已經非常普及,像是通過語音喚醒某一項設備或功能,或是和智能助手進行一些單輪問詢。但想要系統化地普及智能對話技術,實現人機之間流暢的理解和多輪對話,恐怕還有著不少限制。而這種限制,已經到了亟待跨越的時候。
第一, 缺乏靈活的自然語言交互對話,我們在進行人機操作時依然需要依賴按鍵、屏幕等等設備,對于AI技術的應用場景有著很多桎梏。
第二, 在無法進行智能對話的前提之下,很多需要頻繁溝通的工作,依然無法被AI代勞,即使AI已經遠超人類的記憶存儲、計算決策和感知能力。
舉例來說,在車載、智能音箱、客服和機器人這四大領域中,智能對話技術應用的便利與否,就與其體驗息息相關。在車載場景中,人們無暇用手與眼與AI進行交互,必然要依賴靈活精準的對話系統。至于智能音箱這類硬件,智能對話不僅限制其產品形態,也會影響其服務能力。智能客服與機器人更不必說,對于這種以交互為主的產品,能否擁有自然的智能對話技術,實則是根深立命之本。
從市場表現上,我們也能發現智能對話正在進入工業級應用爆發的潛伏期。
目前來說,一項技術爆發所需要的四個因素:技術高度、生態廣度、用戶取向和企業需求,在智能對話領域已經盡數鋪墊完成。
像自然語言處理、語音技術以及知識圖譜等技術已經儲備完善。數據顯示,在行業應用中38%的企業已正在應用基于智能對話的系統、麥克風陣列等上下游硬件解決方案,也在智能硬件市場的成長中達到一定積累,行業生態覆蓋正在加速。數據顯示,2019年Q1中國智能音箱銷量同比增長9倍,移動終端、車載系統、智能硬件等產品中引入對話交互的現象也日益普及,毫無疑問,用戶無比渴望更便利的交互方式。最后,在人力成本日益提高時,企業對于智能對話的需求也越來越旺盛,據與IDC聯合調研,有83.3%企業認為智能對話能有效降低運營成本。
在今天,百度舉辦了百度大腦智能對話引擎及產品發布會,宣布了百度大腦智能對話定制平臺UNIT3.0的全新升級,并展示了智能對話生態全景。
就此,我們或許可以確定,人類終于向“溝通”這一AI應用的橫欄發起了跨越沖刺。
復合型技術的迷墻
如果將百度大腦看做智能對話技術應用的第一個跨越者,我們也可以從中倒推出這項技術應用的難點在哪里。
一般來說,某一項技術工業級應用的突破要取決于成本效率比、人才儲備、配套服務和概念認知之上。
智能對話的特殊之處在于,這項技術的復合性極強,包含了語音識別、語音生成、語音語義一體化、知識圖譜構建等等一系列技術。這就意味著這項技術的成本必然相對偏高、人才儲備也多半集中在技術企業和科技巨頭之中。
而智能對話技術所應用的場景又相對復雜,交互本身無處不在,智能對話技術既可以向智能客服這里軟件服務領域輸出,又可以投入于智能耳機、智能音箱這類硬件領域。更有很多全新的應用空間亟待開發。配套服務的普及,一定是一條相對艱難的道路。
綜合下來,會導致智能對話技術距離應用場景間隔了一道迷墻,注定了很多企業對這項技術的認知理解有所偏差,認為這項技術還并不適合自己的企業應用。
這就是為什么,率先動身跨越橫欄的人,會是百度。
發起沖刺:UNIT 3.0和語音技術平臺正在蓄力
在百度大腦的智能對話生態中,為整個產業開放了兩個重要產品平臺。
第一是為開發者提供專業對話系統定制技術的UNIT 3.0。
基于百度多年積累的自然語言處理、知識圖譜和語音等對話相關的AI技術,百度大腦推出的UNIT3.0版本,在搭建技能、構建知識和整合技能與知識三方面實現全面升級,其中為開發者提供了很多預置能力,例如有關天氣、閑聊、定會議室的對話技能,還有大幅提升樣本生產和標注效率的DataKit和一系列知識庫。
建立在這種模塊化的組件模式上,開發者定制對話系統就會變得像拼樂高一樣簡單,而非是過去那樣,在一團雜亂的毛線中尋找線頭。如此以來,將極大地降低開發成本和時間成本,極大地提升效率與性價比。
第二個產品平臺,是包含了領域語音方案和語音自訓練平臺的語音技術平臺。
相比更傾向于賦能開發者的UNIT 3.0,語音技術平臺則進一步為企業客戶提供了更易上手的工具。
在領域語音方案中,我們可以看到百度大腦推出了他們擅長的端到端一體化解決方案。這次發布會中所展示的呼叫中心語音解決方案,就是一個很好的案例,通過針對于呼叫中心場景優化過專屬語音識別模型,結合呼叫中心場景專屬8K音庫,可以在識別和生成兩端進行優化。對于那些適用于呼叫中心場景的企業用戶來說,其便利程度接近于即拿即用。
語音自訓練平臺,則和EasyDL等自動化機器學習平臺類似,通過從基礎語音模型到行業語音模型再到個性化語音模型的層層訓練,最終提升針對于場景業務的語音識別率。而這一整個過程都是自助式的,不需要代碼基矗這也自然解決了企業人才匱乏的致命問題。
這兩項產品如同百度大腦智能對話生態的左右腿,甩掉了成本、效率和人才的桎梏,直接向智能對話的工業級應用發起沖刺。
客服、消費電子與出行:百度大腦的場景飛躍
那么橫欄之后,究竟存在著什么?
一個人的沖刺是毫無意義的,既然冠以生態之名,那么最終目的一定是帶領產業一同跨欄。
百度大腦智能對話生態對此,已經給出了三個直面落地場景的方案規劃。如同上文所述,目前在車載、智能客服、音箱和機器人幾個領域中,已經涌現出了強烈的智能對話需求。百度大腦智能生態給出的落地場景方案,也分別是客服智能對話場景方案、消費電子智能對話場景方案和出行智能對話場景方案。在這一系列的場景方案中,百度大腦應用了百度技術生態中的綜合能力,去解決場景中一貫存在的沉疴。
例如在智能客服領域,智能對話應用的一大難點在于涉及領域過于廣泛。而百度大腦智能對話生態不僅擁有UNIT 3.0和語音技術平臺這樣的平臺,同樣也借助了百度智能云ABC深入行業在各個領域了累積,就此便可以解決領域的廣泛性問題。
在于中國聯通軟件研究院的合作中,應用了百度AI能力的智慧客服,擁有了更精準的自然語言識別率,可以進行更隨意的場景切換。截至目前,中國聯通智慧客服已經將10010的15秒服務水平提升至88.7%。
在消費電子領域,百度大腦能夠給予合作伙伴的不僅是對于智能對話技術的提升,同樣還有一系列配套技術與服務,讓客戶能夠在同一平臺之上將智能對話技術與其他技術進行排列組合,創造出更多價值。
就像在教育市場中,圍繞著智能對話技術為核心就可以構造出全新的物種。一家來自深圳的教育互動類硬件廠商“好成績”,就在發布會上展示了應用UNIT 3.0打造伴學機器人“萌寶”的故事。有了智能對話技術,教育互動類硬件可以用更低門檻的交互方式適合兒童應用,也能在不斷對話中持續吸引兒童的注意力。更重要的是,“好成績”表示,百度UNIT 3.0的泛能力強,可以瞬間節約近3個小時的數據標注時間;配置平臺上手更快,一個工程師僅用7-10天,就能夠搭建出對話機器人。這對于一貫追求速度的深圳企業來說,是至關重要的。
在車載領域,百度大腦的一項垂直技能是可以克服出行領域信號不穩定的情況,推出了定制化離在線融合框架,在多種網絡條件下提供同樣的對話能力。加之借助于百度車聯網云端芯行業解決方案,來實現克服車內降噪、連接車載應用等等常見的車載領域需求。
一個典型的案例是,在百度AI與和奔馳的合作中,建立在智能對話能力之上,奔馳的車載語音系統可以實現對車用說明書的交互化,當人們發現車內的某一個燈在閃,卻不知道是什么原因時,可以直接以自然語言與車載OS對話詢問,不再需要翻閱厚厚一本說明書,也更適合在駕駛過程中進行。
在AI的整體鏈條中,以往人類與技術的接觸需要文字與圖形構建的操作界面才能實現交互,可以說是一個“不智能”的環,連起了智能兩端。而智能對話技術的豐滿,也讓中間的環不斷智能起來,我們與機器的交互體驗將越來越自然流暢。
不難發現,百度大腦的跨欄優勢并不僅僅在于智能對話技術本身,而是憑借自身在AI技術上的長期和廣泛投入,在每一環節都有著強大的優化能力。這也證明了,在智能對話這一領域中,百度大腦將再一次成為行業中樞與生態開放引擎。
如此以來,智能對話技術所面臨的配套設施不足問題自然迎刃而解。
百度AI:不斷跨欄、不斷自我進化
最后,我們可以聊聊智能對話生態對于百度AI的意義。
我們知道,百度是國內最早布局人工智能的企業,百度大腦是百度AI技術多年積累和業務實踐的集大成者。自百度大腦出現以來,這種開放的形式已經為這個平臺吸引來了大量合作伙伴。
對于百度AI自身來說,在智能對話技術的投入是性價比極高的。小度系列已經在智能音箱領域取得了很好的成績,加上百度搜索引擎的存在,百度自身其實就是一個極為頻繁的人機對話入口。智能對話技術的進步,如同在千尺大宅上加蓋房屋,就算只加蓋了一層,擴展的卻也是不容小覷的空間。何況百度已經通過小度助手積累了很多擁有語音交互方面需求的合作伙伴,智能對話引擎的進步,將讓百度AI進一步提升競爭力。
尤其交互溝通是人與AI之間必然出現的環節,對于這一環節優化的普遍需求,或許會為百度AI帶來更多全新的生態伙伴。
其實對于百度這樣將AI應用生態作為追逐目標的企業來說,對于每一項技術應用的“跨欄突破”,意義并不在于橫欄本身,而是每進一步時,吸引到的生態伙伴和對自身技術生態的補全。
畢竟終點毫無意義,在追逐的過程中,對于自我的打磨重塑,才是最重要的。
評論
查看更多