資料介紹
傳統上,EMC一直被視為“黑色魔術(black magic)”。其實,EMC是可以藉由數學公式來理解的。不過,縱使有數學分析方法可以利用,但那些數學方程式對實際的EMC電路設計而言,仍然太過復 雜了。幸運的是,在大多數的實務工作中,工程師并不需要完全理解那些復雜的數學公式和存在于EMC規范中的學理依據,只要藉由簡單的數學模型,就能夠明白 要如何達到EMC的要求。
本文藉由簡單的數學公式和電磁理論,來說明在印刷電路板(PCB)上被動組件(passive component)的隱藏行為和特性,這些都是工程師想讓所設計的電子產品通過EMC標準時,事先所必須具備的基本知識。
導線和PCB走線
導線(wire)、走線(trace)、固定架……等看似不起眼的組件,卻經常成為射頻能量的最佳發射器(亦即,EMI的來源)。每一種組件都 具有電感,這包含硅芯片的焊線(bond wire)、以及電阻、電容、電感的接腳。每根導線或走線都包含有隱藏的寄生電容和電感。這些寄生性組件會影響導線的阻抗大小,而且對頻率很敏感。依據 LC的值(決定自共振頻率)和PCB走線的長度,在某組件和PCB走線之間,可以產生自共振(self-resonance),因此,形成一根有效率的輻 射天線。
在低頻時,導線大致上只具有電阻的特性。但在高頻時,導線就具有電感的特性。因為變成高頻后,會造成阻抗大小的變化,進而改變導線或PCB走線與接地之間的EMC設計,這時必需使用接地面(ground plane)和接地網格(ground grid)。
導線和PCB走線的最主要差別只在于,導線是圓形的,走線是長方形的。導線或走線的阻抗包含電阻R和感抗XL = 2πfL,在高頻時,此阻抗定義為Z = R + j XL j2πfL,沒有容抗Xc = 1/2πfC存在。頻率高于100 kHz以上時,感抗大于電阻,此時導線或走線不再是低電阻的連接線,而是電感。一般而言,在音頻以上工作的導線或走線應該視為電感,不能再看成電阻,而且 可以是射頻天線。
大多數天線的長度是等于某一特定頻率的1/4或1/2波長(λ)。因此在EMC的規范中,不容許導線或走線在某一特定頻率的λ/20以下工作,因為這會使它突然地變成一根高效能的天線。電感和電容會造成電路的諧振,此現象是不會在它們的規格書中記載的。
例如:假設有一根10公分的走線,R = 57 mΩ,8 nH/cm,所以電感值總共是80 nH。在100 kHz時,可以得到感抗50 mΩ。當頻率超過100 kHz以上時,此走線將變成電感,它的電阻值可以忽略不計。因此,此10公分的走線將在頻率超過150 MHz時,將形成一根有效率的輻射天線。因為在150 MHz時,其波長λ= 2公尺,所以λ/20 = 10公分 = 走線的長度;若頻率大于150 MHz,其波長λ將變小,其1/4λ或1/2λ值將接近于走線的長度(10公分),于是逐漸形成一根完美的天線。
電阻
電阻是在PCB上最常見到的組件。電阻的材質(碳合成、碳膜、云母、繞線型…等)限制了頻率響應的作用和EMC的效果。繞線型電阻并不適合于高頻應用,因為在導線內存在著過多的電感。碳膜電阻雖然包含有電感,但有時適合于高頻應用,因為它的接腳之電感值并不大。
一般人常忽略的是,電阻的封裝大小和寄生電容。寄生電容存在于電阻的兩個終端之間,它們在極高頻時,會對正常的電路特性造成破壞,尤其是頻率達到GHz時。不過,對大多數的應用電路而言,在電阻接腳之間的寄生電容不會比接腳電感來得重要。
當電阻承受超高電壓極限(overvoltage stress)考驗時,必須注意電阻的變化。如果在電阻上發生了“靜電釋放(ESD)”現象,則會發生有趣的事。如果電阻是表面黏著(surface mount)組件,此電阻很可能會被電弧打穿。如果電阻具有接腳,ESD會發現此電阻的高電阻(和高電感)路徑,并避免進入被此電阻所保護的電路。其實, 真正的保護者是此電阻所隱藏的電感和電容特性。
固定的直流電壓和電流(bulk)之功能。真正單純的電容會維持它的電容值,直 到達到自共振頻率。超過此自共振頻率,電容特性會變成像電感一樣。這可以由公式:Xc=1/2πfC來說明,Xc是容抗(單位是Ω)。例如:10μf的電 解電容,在10 kHz時,容抗是1.6Ω;在100 MHz時,降到160μΩ。因此在100MHz時,存在著短路(short circuit)效應,這對EMC而言是很理想的。但是,電解電容的電氣參數:等效串聯電感(equivalent series inductance;ESL)和等效串聯電阻(equivalent series resistance;ESR),將會限制此電容只能在頻率1MHz以下工作。
電容的使用也和接腳電感與體積結構有關,這些因素決定了寄生電感的數目和大小。寄生電感存在于電容的焊線之間,它們使電容在超過自共振頻率以上時,產生和電感一樣的行為,電容因此失去了原先設定的功能。
電感
電感是用來控制PCB內的EMI。對電感而言,它的感抗是和頻率成正比的。這可以由公式:XL = 2πfL來說明,XL是感抗(單位是Ω)。例如:一個理想的10 mH電感,在10 kHz時,感抗是628Ω;在100 MHz時,增加到6.2MΩ。因此在100 MHz時,此電感可以視為開路(open circuit)。在100MHz時,若讓一個訊號通過此電感,將會造成此訊號質量的下降(這是從時域來觀察)。和電容一樣,此電感的電氣參數(線圈之間 的寄生電容)限制了此電感只能在頻率1 MHz以下工作。
問題是,在高頻時,若不能使用電感,那要使用什么呢?答案是,應該使用“鐵粉珠(ferrite bead)”。鐵粉材料是鐵鎂或鐵鎳合金,這些材料具有高的導磁系數(permeability),在高頻和高阻抗下,電感內線圈之間的電容值會最小。鐵 粉珠通常只適用于高頻電路,因為在低頻時,它們基本上是保有電感的完整特性(包含有電阻和抗性分量),因此會造成線路上的些微損失。在高頻時,它基本上只 具有抗性分量(jωL),并且抗性分量會隨著頻率上升而增加,如附圖一所示。實際上,鐵粉珠是射頻能量的高頻衰減器。
其實,可以將鐵粉珠視為一個電阻并聯一個電感。在低頻時,電阻被電感“短路”,電流流往電感;在高頻時,電感的高感抗迫使電流流向電阻。
本質上,鐵粉珠是一種“耗散裝置(dissipative device)”,它會將高頻能量轉換成熱能。因此,在效能上,它只能被當成電阻來解釋,而不是電感。
圖:鐵粉材料的特性
變壓器
變壓器通常存在于電源供應器中,此外,它可以用來對數據訊號、I/O連結、供電接口做絕緣。根據變壓器種類和應用的不同,在一次側 (primary)和二次側(secondary)線圈之間,可能有屏蔽物(shield)存在。此屏蔽物連接到一個接地的參考源,是用來防止此兩組線圈 之間的電容耦合。
?
本文藉由簡單的數學公式和電磁理論,來說明在印刷電路板(PCB)上被動組件(passive component)的隱藏行為和特性,這些都是工程師想讓所設計的電子產品通過EMC標準時,事先所必須具備的基本知識。
導線和PCB走線
導線(wire)、走線(trace)、固定架……等看似不起眼的組件,卻經常成為射頻能量的最佳發射器(亦即,EMI的來源)。每一種組件都 具有電感,這包含硅芯片的焊線(bond wire)、以及電阻、電容、電感的接腳。每根導線或走線都包含有隱藏的寄生電容和電感。這些寄生性組件會影響導線的阻抗大小,而且對頻率很敏感。依據 LC的值(決定自共振頻率)和PCB走線的長度,在某組件和PCB走線之間,可以產生自共振(self-resonance),因此,形成一根有效率的輻 射天線。
在低頻時,導線大致上只具有電阻的特性。但在高頻時,導線就具有電感的特性。因為變成高頻后,會造成阻抗大小的變化,進而改變導線或PCB走線與接地之間的EMC設計,這時必需使用接地面(ground plane)和接地網格(ground grid)。
導線和PCB走線的最主要差別只在于,導線是圓形的,走線是長方形的。導線或走線的阻抗包含電阻R和感抗XL = 2πfL,在高頻時,此阻抗定義為Z = R + j XL j2πfL,沒有容抗Xc = 1/2πfC存在。頻率高于100 kHz以上時,感抗大于電阻,此時導線或走線不再是低電阻的連接線,而是電感。一般而言,在音頻以上工作的導線或走線應該視為電感,不能再看成電阻,而且 可以是射頻天線。
大多數天線的長度是等于某一特定頻率的1/4或1/2波長(λ)。因此在EMC的規范中,不容許導線或走線在某一特定頻率的λ/20以下工作,因為這會使它突然地變成一根高效能的天線。電感和電容會造成電路的諧振,此現象是不會在它們的規格書中記載的。
例如:假設有一根10公分的走線,R = 57 mΩ,8 nH/cm,所以電感值總共是80 nH。在100 kHz時,可以得到感抗50 mΩ。當頻率超過100 kHz以上時,此走線將變成電感,它的電阻值可以忽略不計。因此,此10公分的走線將在頻率超過150 MHz時,將形成一根有效率的輻射天線。因為在150 MHz時,其波長λ= 2公尺,所以λ/20 = 10公分 = 走線的長度;若頻率大于150 MHz,其波長λ將變小,其1/4λ或1/2λ值將接近于走線的長度(10公分),于是逐漸形成一根完美的天線。
電阻
電阻是在PCB上最常見到的組件。電阻的材質(碳合成、碳膜、云母、繞線型…等)限制了頻率響應的作用和EMC的效果。繞線型電阻并不適合于高頻應用,因為在導線內存在著過多的電感。碳膜電阻雖然包含有電感,但有時適合于高頻應用,因為它的接腳之電感值并不大。
一般人常忽略的是,電阻的封裝大小和寄生電容。寄生電容存在于電阻的兩個終端之間,它們在極高頻時,會對正常的電路特性造成破壞,尤其是頻率達到GHz時。不過,對大多數的應用電路而言,在電阻接腳之間的寄生電容不會比接腳電感來得重要。
當電阻承受超高電壓極限(overvoltage stress)考驗時,必須注意電阻的變化。如果在電阻上發生了“靜電釋放(ESD)”現象,則會發生有趣的事。如果電阻是表面黏著(surface mount)組件,此電阻很可能會被電弧打穿。如果電阻具有接腳,ESD會發現此電阻的高電阻(和高電感)路徑,并避免進入被此電阻所保護的電路。其實, 真正的保護者是此電阻所隱藏的電感和電容特性。
固定的直流電壓和電流(bulk)之功能。真正單純的電容會維持它的電容值,直 到達到自共振頻率。超過此自共振頻率,電容特性會變成像電感一樣。這可以由公式:Xc=1/2πfC來說明,Xc是容抗(單位是Ω)。例如:10μf的電 解電容,在10 kHz時,容抗是1.6Ω;在100 MHz時,降到160μΩ。因此在100MHz時,存在著短路(short circuit)效應,這對EMC而言是很理想的。但是,電解電容的電氣參數:等效串聯電感(equivalent series inductance;ESL)和等效串聯電阻(equivalent series resistance;ESR),將會限制此電容只能在頻率1MHz以下工作。
電容的使用也和接腳電感與體積結構有關,這些因素決定了寄生電感的數目和大小。寄生電感存在于電容的焊線之間,它們使電容在超過自共振頻率以上時,產生和電感一樣的行為,電容因此失去了原先設定的功能。
電感
電感是用來控制PCB內的EMI。對電感而言,它的感抗是和頻率成正比的。這可以由公式:XL = 2πfL來說明,XL是感抗(單位是Ω)。例如:一個理想的10 mH電感,在10 kHz時,感抗是628Ω;在100 MHz時,增加到6.2MΩ。因此在100 MHz時,此電感可以視為開路(open circuit)。在100MHz時,若讓一個訊號通過此電感,將會造成此訊號質量的下降(這是從時域來觀察)。和電容一樣,此電感的電氣參數(線圈之間 的寄生電容)限制了此電感只能在頻率1 MHz以下工作。
問題是,在高頻時,若不能使用電感,那要使用什么呢?答案是,應該使用“鐵粉珠(ferrite bead)”。鐵粉材料是鐵鎂或鐵鎳合金,這些材料具有高的導磁系數(permeability),在高頻和高阻抗下,電感內線圈之間的電容值會最小。鐵 粉珠通常只適用于高頻電路,因為在低頻時,它們基本上是保有電感的完整特性(包含有電阻和抗性分量),因此會造成線路上的些微損失。在高頻時,它基本上只 具有抗性分量(jωL),并且抗性分量會隨著頻率上升而增加,如附圖一所示。實際上,鐵粉珠是射頻能量的高頻衰減器。
其實,可以將鐵粉珠視為一個電阻并聯一個電感。在低頻時,電阻被電感“短路”,電流流往電感;在高頻時,電感的高感抗迫使電流流向電阻。
本質上,鐵粉珠是一種“耗散裝置(dissipative device)”,它會將高頻能量轉換成熱能。因此,在效能上,它只能被當成電阻來解釋,而不是電感。
圖:鐵粉材料的特性
變壓器
變壓器通常存在于電源供應器中,此外,它可以用來對數據訊號、I/O連結、供電接口做絕緣。根據變壓器種類和應用的不同,在一次側 (primary)和二次側(secondary)線圈之間,可能有屏蔽物(shield)存在。此屏蔽物連接到一個接地的參考源,是用來防止此兩組線圈 之間的電容耦合。
?
下載該資料的人也在下載
下載該資料的人還在閱讀
更多 >
- 高性能PCB的SI/PI和EMI/EMC仿真設計 32次下載
- EMI的診斷技巧與案例解析資源下載 45次下載
- EMI/EMC設計經典70問答 25次下載
- 華為PCB的EMC設計指南下載 149次下載
- 如何讓你設計的電子產品通過EMC標準?PCB被動組件的隱藏特性解析 14次下載
- PCB設計中EMC/EMI的仿真 0次下載
- 解析EMI和EMC電路中磁珠和電感的不同作用 6次下載
- EMIEMC 設計講座(一)PCB 被動組件的隱藏特性解析 0次下載
- PCB板EMC--EMI-的設計技巧 0次下載
- emi-emc設計講座(一)pcb被動組件的隱藏特性解析 0次下載
- emi-emc設計pcb被動組件的隱藏特性解析 0次下載
- EMI/EMC設計講座(一)PCB被動組件的隱藏特性解析 0次下載
- EMI/EMC設計講座完整版(共六章) 0次下載
- PCB被動組件的隱藏特性解析 0次下載
- EMI EMC設計秘籍
- 避免PCB設計中出現EMC和EMI的9個技巧 1874次閱讀
- EMI/EMC就緒型SerDes—基本測試策略和指南 1897次閱讀
- EMC設計和EMC問題改進的方法解析 5646次閱讀
- EMC概念介紹:EMI和EMS 1w次閱讀
- EMC/EMI的模擬仿真使PCB的設計進入了新的時代 1043次閱讀
- PCB設計過程中的仿真模型EMC/EMI問題分析 1670次閱讀
- PCB的的EMC技巧 2073次閱讀
- PCB設計中的EMC/EMI模擬仿真實際解析 2671次閱讀
- 淺談電子電路設計中PCB與EMC/EMI的模擬仿真相結合 1352次閱讀
- PCB設計EMC/EMI的仿真分析 2890次閱讀
- 關于PCB設計過程中的EMC/EMI仿真淺析 6053次閱讀
- 在數字電路PCB設計中該如何進行EMI控制? 1894次閱讀
- 關于EMC/EMI模擬仿真的薄弱環節PCB設計過程實例詳解 2165次閱讀
- PCB上被動組件的隱藏行為和特性分析 4927次閱讀
- 解析PCB分層堆疊設計在抑制EMI上的作用 1906次閱讀
下載排行
本周
- 1電子電路原理第七版PDF電子教材免費下載
- 0.00 MB | 1497次下載 | 免費
- 2TC358743XBG評估板參考手冊
- 1.36 MB | 330次下載 | 免費
- 3單片機典型實例介紹
- 18.19 MB | 103次下載 | 1 積分
- 4S7-200PLC編程實例詳細資料
- 1.17 MB | 28次下載 | 1 積分
- 5筆記本電腦主板的元件識別和講解說明
- 4.28 MB | 18次下載 | 4 積分
- 6開關電源原理及各功能電路詳解
- 0.38 MB | 15次下載 | 免費
- 79天練會電子電路識圖
- 5.91 MB | 6次下載 | 免費
- 8100W短波放大電路圖
- 0.05 MB | 4次下載 | 3 積分
本月
- 1OrCAD10.5下載OrCAD10.5中文版軟件
- 0.00 MB | 234314次下載 | 免費
- 2PADS 9.0 2009最新版 -下載
- 0.00 MB | 66304次下載 | 免費
- 3protel99下載protel99軟件下載(中文版)
- 0.00 MB | 51209次下載 | 免費
- 4LabView 8.0 專業版下載 (3CD完整版)
- 0.00 MB | 51043次下載 | 免費
- 5555集成電路應用800例(新編版)
- 0.00 MB | 33564次下載 | 免費
- 6接口電路圖大全
- 未知 | 30321次下載 | 免費
- 7Multisim 10下載Multisim 10 中文版
- 0.00 MB | 28588次下載 | 免費
- 8開關電源設計實例指南
- 未知 | 21540次下載 | 免費
總榜
- 1matlab軟件下載入口
- 未知 | 935054次下載 | 免費
- 2protel99se軟件下載(可英文版轉中文版)
- 78.1 MB | 537794次下載 | 免費
- 3MATLAB 7.1 下載 (含軟件介紹)
- 未知 | 420026次下載 | 免費
- 4OrCAD10.5下載OrCAD10.5中文版軟件
- 0.00 MB | 234314次下載 | 免費
- 5Altium DXP2002下載入口
- 未知 | 233046次下載 | 免費
- 6電路仿真軟件multisim 10.0免費下載
- 340992 | 191183次下載 | 免費
- 7十天學會AVR單片機與C語言視頻教程 下載
- 158M | 183278次下載 | 免費
- 8proe5.0野火版下載(中文版免費下載)
- 未知 | 138039次下載 | 免費
評論
查看更多