資料介紹
1 引言
隨著同防工業(yè)對精確制導武器要求的不斷提高,武器系統(tǒng)總體設計方案的日趨復雜,以及電子元器件水平的飛速發(fā)展。導引頭信號處理器的功能越來越復雜,硬件規(guī)模越來越大.處理速度也越來越高.而且產(chǎn)品的更新速度加快,生命周期縮短。實現(xiàn)功能強、性能指標高、抗干擾能力強、工作穩(wěn)定可靠、體積小、功耗低、結構緊湊合理符合彈載要求的導引頭信號處理器已經(jīng)勢在必行。過去單一采用DSP處理器搭建信號處理器已經(jīng)不能滿足要求.FPGA+DSP的導引頭信號處理結構成為當前以及未來一段時間的主流。
FPGA和DSP處理器具有截然不同的架構,在一種器件上非常有效的算法.在另一種器件上可能效率會非常低。如果目標要求大量的并行處理或者最大的多通道流量,那么單純基于DSP的硬件系統(tǒng)就可能需要更大的面積,成本或功耗。一個FPGA僅在一個器件上就能高提供多達550個并行乘法和累加運算,從而以較少的器件和較低的功耗提供同樣的性能。但對于定期系數(shù)更新,決策控制任務或者高速串行處理任務,F(xiàn)PGA的優(yōu)化程度遠不如DSP。
FPGA+DSP的數(shù)字硬件系統(tǒng)正好結合了兩者的優(yōu)點,兼顧了速度和靈活性。本文以導引頭信號處理系統(tǒng)為例說明FPGA+DSP系統(tǒng)中FPGA的關鍵技術。
2 系統(tǒng)組成
本系統(tǒng)南一片F(xiàn)PGA和一片DSP來組成,F(xiàn)PGA在實時并行計算實現(xiàn)標準數(shù)字信號處理算法的能力遠強于DSP,因此數(shù)字接收系統(tǒng)信號處理要用到的FIR濾波、FFT、IFFT等算法,在FPGA中實現(xiàn)要遠快于用DSP,且FPGA廠商提供了非常豐富易用的能實現(xiàn)數(shù)字信號處理的參數(shù)Core.可以大大簡化開發(fā)過程。而且,F(xiàn)PGA支持丁程師設計高度并行的架構以及有大量乘法器和存儲器資源,因此將數(shù)字下變頻(DDC),脈壓(PC),動目標檢測(MTD),恒虛警處理(CFAR)等也在FPGA中實現(xiàn),可有效提高實時性,集成度和穩(wěn)定性。而DSP用來進行其他復雜信號處理,比如自動目標識別、抗干擾等。
FPGA和DSP的通信通過32位的數(shù)據(jù)總線聯(lián)通。FPGA通過此數(shù)據(jù)總線把柃測得到的目標信息傳遞給DSP做后續(xù)處理,DSP則通過數(shù)據(jù)總線傳遞控制信息。
圖1 FPGA+DSP的系統(tǒng)組成框圖
3 FPGA設計中的關鍵技術
3.1 跨時鐘域的設計
3.1.1基礎
只有最初級的邏輯電路才使用單一的時鐘。大多數(shù)與數(shù)據(jù)傳輸相關的應用都有與牛俱來的挑戰(zhàn),即跨越多個時鐘域的數(shù)據(jù)移動,例如磁盤控制器、CDROM/DVD控制器、調(diào)制解調(diào)器、網(wǎng)卡以及網(wǎng)絡處理器等。當信號從一個時鐘域傳送到另一個時鐘域時,出現(xiàn)在新時鐘域的信號是異步信號。
在現(xiàn)代IC、ASIC以及FPGA設計中,許多軟件程序可以幫助工程師建立幾百萬門的電路。但這些程序都無法解決信號同步問題。設計者需要了解可靠的設計技巧,以減少電路在跨時鐘域通信時的故障風險。
從事多時鐘設計的第一步是要理解信號穩(wěn)定性問題。當一個信號跨越某個時鐘域時.對新時鐘域的電路來說它就是一個異步信號。接收該信號的電路需要對其進行同步。同步可以防止第一級存儲單元(觸發(fā)器)的亞穩(wěn)態(tài)在新的時鐘域里傳播蔓延。
亞穩(wěn)態(tài)是指觸發(fā)器無法在某個規(guī)定時間段內(nèi)達到一個可確認的狀態(tài)。當一個觸發(fā)器進入亞穩(wěn)態(tài)時,既尤法預測該單元的輸}}{電平,也無法預測何時輸出才能穩(wěn)定在某個正確的電平上。在這個穩(wěn)定期問,觸發(fā)器輸出一些中間級電平,或者可能處于振蕩狀態(tài),并且這種尤用的輸出電平可以滑信號通道上的各個觸發(fā)器級聯(lián)式傳播下去。
由于數(shù)據(jù)率比較低,而FPGA的工作頻率可以很高,所以在雷達信號處理機的FPGA設計中,勢必要引入跨時鐘域的設計,例如在某項口中,控制網(wǎng)絡為10M.脈沖壓縮工作時鐘為200M,MTD、CFAR為80M,是個典型的跨時鐘域設計。
隨著同防工業(yè)對精確制導武器要求的不斷提高,武器系統(tǒng)總體設計方案的日趨復雜,以及電子元器件水平的飛速發(fā)展。導引頭信號處理器的功能越來越復雜,硬件規(guī)模越來越大.處理速度也越來越高.而且產(chǎn)品的更新速度加快,生命周期縮短。實現(xiàn)功能強、性能指標高、抗干擾能力強、工作穩(wěn)定可靠、體積小、功耗低、結構緊湊合理符合彈載要求的導引頭信號處理器已經(jīng)勢在必行。過去單一采用DSP處理器搭建信號處理器已經(jīng)不能滿足要求.FPGA+DSP的導引頭信號處理結構成為當前以及未來一段時間的主流。
FPGA和DSP處理器具有截然不同的架構,在一種器件上非常有效的算法.在另一種器件上可能效率會非常低。如果目標要求大量的并行處理或者最大的多通道流量,那么單純基于DSP的硬件系統(tǒng)就可能需要更大的面積,成本或功耗。一個FPGA僅在一個器件上就能高提供多達550個并行乘法和累加運算,從而以較少的器件和較低的功耗提供同樣的性能。但對于定期系數(shù)更新,決策控制任務或者高速串行處理任務,F(xiàn)PGA的優(yōu)化程度遠不如DSP。
FPGA+DSP的數(shù)字硬件系統(tǒng)正好結合了兩者的優(yōu)點,兼顧了速度和靈活性。本文以導引頭信號處理系統(tǒng)為例說明FPGA+DSP系統(tǒng)中FPGA的關鍵技術。
2 系統(tǒng)組成
本系統(tǒng)南一片F(xiàn)PGA和一片DSP來組成,F(xiàn)PGA在實時并行計算實現(xiàn)標準數(shù)字信號處理算法的能力遠強于DSP,因此數(shù)字接收系統(tǒng)信號處理要用到的FIR濾波、FFT、IFFT等算法,在FPGA中實現(xiàn)要遠快于用DSP,且FPGA廠商提供了非常豐富易用的能實現(xiàn)數(shù)字信號處理的參數(shù)Core.可以大大簡化開發(fā)過程。而且,F(xiàn)PGA支持丁程師設計高度并行的架構以及有大量乘法器和存儲器資源,因此將數(shù)字下變頻(DDC),脈壓(PC),動目標檢測(MTD),恒虛警處理(CFAR)等也在FPGA中實現(xiàn),可有效提高實時性,集成度和穩(wěn)定性。而DSP用來進行其他復雜信號處理,比如自動目標識別、抗干擾等。
FPGA和DSP的通信通過32位的數(shù)據(jù)總線聯(lián)通。FPGA通過此數(shù)據(jù)總線把柃測得到的目標信息傳遞給DSP做后續(xù)處理,DSP則通過數(shù)據(jù)總線傳遞控制信息。
圖1 FPGA+DSP的系統(tǒng)組成框圖
3 FPGA設計中的關鍵技術
3.1 跨時鐘域的設計
3.1.1基礎
只有最初級的邏輯電路才使用單一的時鐘。大多數(shù)與數(shù)據(jù)傳輸相關的應用都有與牛俱來的挑戰(zhàn),即跨越多個時鐘域的數(shù)據(jù)移動,例如磁盤控制器、CDROM/DVD控制器、調(diào)制解調(diào)器、網(wǎng)卡以及網(wǎng)絡處理器等。當信號從一個時鐘域傳送到另一個時鐘域時,出現(xiàn)在新時鐘域的信號是異步信號。
在現(xiàn)代IC、ASIC以及FPGA設計中,許多軟件程序可以幫助工程師建立幾百萬門的電路。但這些程序都無法解決信號同步問題。設計者需要了解可靠的設計技巧,以減少電路在跨時鐘域通信時的故障風險。
從事多時鐘設計的第一步是要理解信號穩(wěn)定性問題。當一個信號跨越某個時鐘域時.對新時鐘域的電路來說它就是一個異步信號。接收該信號的電路需要對其進行同步。同步可以防止第一級存儲單元(觸發(fā)器)的亞穩(wěn)態(tài)在新的時鐘域里傳播蔓延。
亞穩(wěn)態(tài)是指觸發(fā)器無法在某個規(guī)定時間段內(nèi)達到一個可確認的狀態(tài)。當一個觸發(fā)器進入亞穩(wěn)態(tài)時,既尤法預測該單元的輸}}{電平,也無法預測何時輸出才能穩(wěn)定在某個正確的電平上。在這個穩(wěn)定期問,觸發(fā)器輸出一些中間級電平,或者可能處于振蕩狀態(tài),并且這種尤用的輸出電平可以滑信號通道上的各個觸發(fā)器級聯(lián)式傳播下去。
由于數(shù)據(jù)率比較低,而FPGA的工作頻率可以很高,所以在雷達信號處理機的FPGA設計中,勢必要引入跨時鐘域的設計,例如在某項口中,控制網(wǎng)絡為10M.脈沖壓縮工作時鐘為200M,MTD、CFAR為80M,是個典型的跨時鐘域設計。
下載該資料的人也在下載
下載該資料的人還在閱讀
更多 >
- W波段雷達導引頭的基本實現(xiàn)方案、關鍵技術解決途徑
- 基于FPGA+DSP模式的智能相機設計
- 《捷聯(lián)導引頭穩(wěn)定與跟蹤技術》pdf 0次下載
- 基于FPGA+DSP彈載SAR信號處理系統(tǒng)設計
- 基于FPGA+DSP的高精度數(shù)字電源數(shù)據(jù)采集系統(tǒng)設計
- 如何進行相控陣雷達導引頭收發(fā)系統(tǒng)的設計 20次下載
- 相控陣雷達導引頭的介紹及其數(shù)字平臺設計 10次下載
- 基于FPGA+DSP的圖像處理系統(tǒng)解析 12次下載
- 基于導引頭信號處理系統(tǒng)探究FPGA+DSP系統(tǒng)中FPGA的關鍵技術 1次下載
- FPGA+DSP的導引頭信號處理結構設計解析 1次下載
- 基于FPGA+DSP實時圖像采集處理系統(tǒng)設計 9次下載
- FPGA+DSP導引頭信號處理中FPGA設計的關鍵技術
- FPGA+DSP導引頭信號處理中FPGA設計的關鍵技術
- DSP+FPGA 實時信號處理系統(tǒng)中
- 基于DSP Builder的電視導引頭跟蹤控制系統(tǒng)設計
- 可編程導引頭模擬器怎么用 625次閱讀
- 一種基于DSP+FPGA結構的通用飛控計算機設計方法介紹 2184次閱讀
- 微帶天線的功率容量能否滿足相控陣導引頭的要求? 8439次閱讀
- 淺析FPGA+DSP結構中的配置方式 8001次閱讀
- 以嵌入式DSP模塊和FPGA構架為基礎的提高無線信號處理性能的子系統(tǒng)設計 795次閱讀
- 關于一種小型、高效反輻射導引頭接收方案的設計 6070次閱讀
- FPGA會取代DSP嗎?FPGA與DSP區(qū)別介紹 3.6w次閱讀
- 基于FPGA的移動終端信號處理器設計 1399次閱讀
- 基于FPGA+DSP的視頻控制的智能交通燈設計 2043次閱讀
- 基于FPGA和DSP的噴油器霧化粒徑測量系統(tǒng)的設計 1918次閱讀
- 基于FPGA+DSP的跳頻電臺傳輸系統(tǒng)的設計方案分析 2179次閱讀
- 彩色視頻增強算法關鍵技術FPGA實現(xiàn) 2319次閱讀
- 一文了解FPGA與DSP的區(qū)別、特點及用途 2.9w次閱讀
- 基于FPGA+DSP架構視頻處理系統(tǒng)設計 1255次閱讀
- FPGA+DSP的高速通信接口設計與實現(xiàn) 7623次閱讀
下載排行
本周
- 1XL4015+LM358恒壓恒流電路圖
- 0.38 MB | 137次下載 | 1 積分
- 2PCB布線和布局電路設計規(guī)則
- 0.40 MB | 4次下載 | 免費
- 3TPS6287B25降壓轉(zhuǎn)換器評估模塊
- 3.46MB | 1次下載 | 免費
- 4INA226EVM用戶指南
- 4.7MB | 1次下載 | 免費
- 5INA226EVM修訂版A模型用戶指南和軟件教程
- 2.28MB | 1次下載 | 免費
- 6Altium Designer印刷電路板設計與制作PDF電子書免費下載
- 14.11 MB | 0次下載 | 3 積分
- 7DLPC3470和DLPC3478軟件編程人員指南
- 1.68MB | 次下載 | 免費
- 8TPS1213-Q1智能高側驅(qū)動器評估模塊
- 1.63MB | 次下載 | 免費
本月
- 1XL4015+LM358恒壓恒流電路圖
- 0.38 MB | 137次下載 | 1 積分
- 2新概念模擬電路第四冊信號處理電路電子書免費下載
- 10.69 MB | 60次下載 | 免費
- 3800VA純正弦波逆變器的參考設計
- 2.96MB | 34次下載 | 免費
- 4純電動汽?的主要部件及?作原理
- 5.76 MB | 15次下載 | 5 積分
- 5JESD79-5C_v1.30-2024 內(nèi)存技術規(guī)范
- 2.71 MB | 10次下載 | 免費
- 6elmo直線電機驅(qū)動調(diào)試細則
- 4.76 MB | 9次下載 | 6 積分
- 7明偉電源模塊RSP-3000圖紙
- 0.30 MB | 8次下載 | 免費
- 8使用BQ76PL102系列電量計進行BQ78PL114的快速入門指南
- 4.04MB | 7次下載 | 免費
總榜
- 1matlab軟件下載入口
- 未知 | 935115次下載 | 10 積分
- 2開源硬件-PMP21529.1-4 開關降壓/升壓雙向直流/直流轉(zhuǎn)換器 PCB layout 設計
- 1.48MB | 420061次下載 | 10 積分
- 3Altium DXP2002下載入口
- 未知 | 233084次下載 | 10 積分
- 4電路仿真軟件multisim 10.0免費下載
- 340992 | 191366次下載 | 10 積分
- 5十天學會AVR單片機與C語言視頻教程 下載
- 158M | 183329次下載 | 10 積分
- 6labview8.5下載
- 未知 | 81581次下載 | 10 積分
- 7Keil工具MDK-Arm免費下載
- 0.02 MB | 73805次下載 | 10 積分
- 8LabVIEW 8.6下載
- 未知 | 65985次下載 | 10 積分
評論
查看更多