deepid3:非常深的神經(jīng)網(wǎng)絡(luò)的人臉識別深度算法的網(wǎng)絡(luò)架構(gòu)
資料介紹
Using deep neural networks to learn effective feature representations has become popular in face recognition [12, 20, 17, 22, 14, 13, 18, 21, 19, 15]。 With better deep network architectures and supervisory methods, face recognition accuracy has been boosted rapidly in recent years. In particular, a few noticeable face representation learning techniques are evolved recently. An early effort of learning deep face representation in a supervised way was to employ face verification as the supervisory signal [12], which required classifying a pair of training images as being the same person or not. It greatly reduced the intra-personal variations in the face representation. Then learning discriminative deep face representation through large-scale face identity classification (face identification) was proposed by DeepID [14] and DeepFace [17, 18]。 By classifying training images into a large amount of identities, the last hidden layer of deep neural networks would form rich identity-related features. With this technique, deep learning got close to human performance for the first time on tightly cropped face images of the extensively evaluated LFW face verification dataset [6]。 However, the learned face representation could also contain significant intrapersonal variations. Motivated by both [12] and [14], an approach of learning deep face representation by joint face identification-verification was proposed in DeepID2 [13] and was further improved in DeepID2+ [15]。 Adding verification supervisory signals significantly reduced intrapersonal variations, leading to another significant improvement on face recognition performance. Human face verification accuracy on the entire face images of LFW was surpassed finally [13, 15]。 Both GoogLeNet [16] and VGG [10] ranked in the top in general image classification in ILSVRC 2014. This motivates us to investigate whether the superb learning capacity brought by very deep net structures can also benefit face recognition.
- 基于粒神經(jīng)網(wǎng)絡(luò)與遺傳算法優(yōu)化的人臉識別算法 0次下載
- 基于改進(jìn)CNN網(wǎng)絡(luò)與集成學(xué)習(xí)的人臉識別算法 6次下載
- 基于域適應(yīng)的卷積神經(jīng)網(wǎng)絡(luò)人臉識別結(jié)構(gòu) 7次下載
- 基于剪枝與量化的卷積神經(jīng)網(wǎng)絡(luò)壓縮算法 6次下載
- 基于深度學(xué)習(xí)的快速人臉識別算法及模型 13次下載
- 3小時學(xué)習(xí)神經(jīng)網(wǎng)絡(luò)與深度學(xué)習(xí)課件下載 0次下載
- 基于深度神經(jīng)網(wǎng)絡(luò)的文本分類分析 37次下載
- 如何使用深度神經(jīng)網(wǎng)絡(luò)實(shí)現(xiàn)實(shí)時人臉識別 7次下載
- 基于深度神經(jīng)網(wǎng)絡(luò)的特征加權(quán)融合人臉識別方法DLWF 2次下載
- 基于BP神經(jīng)網(wǎng)絡(luò)的人臉識別方法 5次下載
- 基于BP神經(jīng)網(wǎng)絡(luò)和局部與整體奇異值分解的人臉識別 24次下載
- 改進(jìn)PSO優(yōu)化神經(jīng)網(wǎng)絡(luò)算法的人體姿態(tài)識別_何佳佳 1次下載
- 一種卷積神經(jīng)網(wǎng)絡(luò)和極限學(xué)習(xí)機(jī)相結(jié)合的人臉識別方法_余丹 0次下載
- 基于BP神經(jīng)網(wǎng)絡(luò)的2DPCA人臉識別算法
- 基于DCT-BP神經(jīng)網(wǎng)絡(luò)的人臉表情識別
- 殘差網(wǎng)絡(luò)是深度神經(jīng)網(wǎng)絡(luò)嗎 702次閱讀
- BP神經(jīng)網(wǎng)絡(luò)和人工神經(jīng)網(wǎng)絡(luò)的區(qū)別 338次閱讀
- 卷積神經(jīng)網(wǎng)絡(luò)在人臉識別中的應(yīng)用 284次閱讀
- 深度神經(jīng)網(wǎng)絡(luò)與基本神經(jīng)網(wǎng)絡(luò)的區(qū)別 307次閱讀
- 深度神經(jīng)網(wǎng)絡(luò)的設(shè)計方法 235次閱讀
- 卷積神經(jīng)網(wǎng)絡(luò)與循環(huán)神經(jīng)網(wǎng)絡(luò)的區(qū)別 866次閱讀
- 神經(jīng)網(wǎng)絡(luò)優(yōu)化算法有哪些 268次閱讀
- 深度學(xué)習(xí)與卷積神經(jīng)網(wǎng)絡(luò)的應(yīng)用 542次閱讀
- 神經(jīng)網(wǎng)絡(luò)在圖像識別中的應(yīng)用 394次閱讀
- 神經(jīng)網(wǎng)絡(luò)架構(gòu)有哪些 321次閱讀
- 如何訓(xùn)練和優(yōu)化神經(jīng)網(wǎng)絡(luò) 261次閱讀
- 詳解深度學(xué)習(xí)、神經(jīng)網(wǎng)絡(luò)與卷積神經(jīng)網(wǎng)絡(luò)的應(yīng)用 1557次閱讀
- 深度神經(jīng)網(wǎng)絡(luò)的實(shí)現(xiàn)機(jī)理與決策邏輯難以理解 2799次閱讀
- BP神經(jīng)網(wǎng)絡(luò)概述 4.4w次閱讀
- 卷積神經(jīng)網(wǎng)絡(luò)CNN架構(gòu)分析-LeNet 2687次閱讀
下載排行
本周
- 1TC358743XBG評估板參考手冊
- 1.36 MB | 330次下載 | 免費(fèi)
- 2開關(guān)電源基礎(chǔ)知識
- 5.73 MB | 11次下載 | 免費(fèi)
- 3嵌入式linux-聊天程序設(shè)計
- 0.60 MB | 3次下載 | 免費(fèi)
- 4DIY動手組裝LED電子顯示屏
- 0.98 MB | 3次下載 | 免費(fèi)
- 5基于FPGA的C8051F單片機(jī)開發(fā)板設(shè)計
- 0.70 MB | 2次下載 | 免費(fèi)
- 651單片機(jī)窗簾控制器仿真程序
- 1.93 MB | 2次下載 | 免費(fèi)
- 751單片機(jī)大棚環(huán)境控制器仿真程序
- 1.10 MB | 2次下載 | 免費(fèi)
- 8基于51單片機(jī)的RGB調(diào)色燈程序仿真
- 0.86 MB | 2次下載 | 免費(fèi)
本月
- 1OrCAD10.5下載OrCAD10.5中文版軟件
- 0.00 MB | 234315次下載 | 免費(fèi)
- 2555集成電路應(yīng)用800例(新編版)
- 0.00 MB | 33566次下載 | 免費(fèi)
- 3接口電路圖大全
- 未知 | 30323次下載 | 免費(fèi)
- 4開關(guān)電源設(shè)計實(shí)例指南
- 未知 | 21549次下載 | 免費(fèi)
- 5電氣工程師手冊免費(fèi)下載(新編第二版pdf電子書)
- 0.00 MB | 15349次下載 | 免費(fèi)
- 6數(shù)字電路基礎(chǔ)pdf(下載)
- 未知 | 13750次下載 | 免費(fèi)
- 7電子制作實(shí)例集錦 下載
- 未知 | 8113次下載 | 免費(fèi)
- 8《LED驅(qū)動電路設(shè)計》 溫德爾著
- 0.00 MB | 6656次下載 | 免費(fèi)
總榜
- 1matlab軟件下載入口
- 未知 | 935054次下載 | 免費(fèi)
- 2protel99se軟件下載(可英文版轉(zhuǎn)中文版)
- 78.1 MB | 537798次下載 | 免費(fèi)
- 3MATLAB 7.1 下載 (含軟件介紹)
- 未知 | 420027次下載 | 免費(fèi)
- 4OrCAD10.5下載OrCAD10.5中文版軟件
- 0.00 MB | 234315次下載 | 免費(fèi)
- 5Altium DXP2002下載入口
- 未知 | 233046次下載 | 免費(fèi)
- 6電路仿真軟件multisim 10.0免費(fèi)下載
- 340992 | 191186次下載 | 免費(fèi)
- 7十天學(xué)會AVR單片機(jī)與C語言視頻教程 下載
- 158M | 183279次下載 | 免費(fèi)
- 8proe5.0野火版下載(中文版免費(fèi)下載)
- 未知 | 138040次下載 | 免費(fèi)
評論
查看更多