資料介紹
針對(duì)紋身圖像的特點(diǎn)和卷積神經(jīng)網(wǎng)絡(luò)(CNN)在全連接層對(duì)圖像特征抽取能力的不足問(wèn)題,提出一種三通道的卷積神經(jīng)網(wǎng)絡(luò)紋身圖像檢測(cè)算法,并進(jìn)行了三方面的改進(jìn)工作。首先,針對(duì)紋身圖像的特點(diǎn)改進(jìn)圖像預(yù)處理方案;其次,設(shè)計(jì)了一個(gè)基于三通道全連接層的卷積神經(jīng)網(wǎng)絡(luò)進(jìn)行特征提取,并對(duì)特征建立索引,有效地提高了網(wǎng)絡(luò)對(duì)不同尺度下空間信息的提取能力,實(shí)現(xiàn)了對(duì)紋身圖像的高效檢測(cè);最后,通過(guò)兩個(gè)數(shù)據(jù)集驗(yàn)證了算法的泛化能力。實(shí)驗(yàn)結(jié)果表明,對(duì)NIST數(shù)據(jù)集所提預(yù)處理方案比Alex方案有總正確率提高0.17個(gè)百分點(diǎn),紋身圖像正確率提高0. 29個(gè)百分點(diǎn)。在所提預(yù)處理方案下,提出的算法在標(biāo)準(zhǔn)的NIST紋身圖像集上具有明顯的優(yōu)勢(shì),正確率從NIST公布的最優(yōu)值96. 3%提高到99. 1%,提高了2.8個(gè)百分點(diǎn);相對(duì)于傳統(tǒng)的CNN算法,正確率從98. 8%提高到99. 1%,提高了0.3個(gè)百分點(diǎn)。在Flickr數(shù)據(jù)集上也有相應(yīng)的性能提升。
?
- 基于多列卷積神經(jīng)網(wǎng)絡(luò)的人群計(jì)數(shù)算法 6次下載
- 基于全卷積神經(jīng)網(wǎng)絡(luò)的單像素邊緣提取算法 5次下載
- 基于卷積神經(jīng)網(wǎng)絡(luò)多層面二階特征融合模型 4次下載
- 基于卷積循環(huán)神經(jīng)網(wǎng)絡(luò)的自動(dòng)代碼特征提取模型 46次下載
- 基于特征交換的卷積神經(jīng)網(wǎng)絡(luò)圖像分類算法 27次下載
- 基于迭代膨脹卷積神經(jīng)網(wǎng)絡(luò)與ATT的實(shí)體名識(shí)別方法 6次下載
- 基于多孔卷積神經(jīng)網(wǎng)絡(luò)的圖像深度估計(jì)模型 5次下載
- 使用深度卷積神經(jīng)網(wǎng)絡(luò)實(shí)現(xiàn)深度導(dǎo)向顯著性檢測(cè)算法 0次下載
- 如何使用詞向量和卷積神經(jīng)網(wǎng)絡(luò)進(jìn)行垃圾短信識(shí)別的方法介紹 7次下載
- 如何使用混合卷積神經(jīng)網(wǎng)絡(luò)和循環(huán)神經(jīng)網(wǎng)絡(luò)進(jìn)行入侵檢測(cè)模型的設(shè)計(jì) 19次下載
- 卷積神經(jīng)網(wǎng)絡(luò)特征重要性分析及增強(qiáng)特征選擇模型 0次下載
- 基于聯(lián)合層特征的卷積神經(jīng)網(wǎng)絡(luò)進(jìn)行車標(biāo)識(shí)別 0次下載
- 利用多流特征提升低資源卷積神經(jīng)網(wǎng)絡(luò)聲學(xué)模型 0次下載
- 卷積神經(jīng)網(wǎng)絡(luò)的基本結(jié)構(gòu)和運(yùn)行原理 0次下載
- 基于卷積神經(jīng)網(wǎng)絡(luò)的圖像標(biāo)注模型 4次下載
- 卷積神經(jīng)網(wǎng)絡(luò)共包括哪些層級(jí) 384次閱讀
- 神經(jīng)網(wǎng)絡(luò)中的卷積層、池化層與全連接層 1672次閱讀
- 全卷積神經(jīng)網(wǎng)絡(luò)的工作原理和應(yīng)用 374次閱讀
- BP神經(jīng)網(wǎng)絡(luò)和卷積神經(jīng)網(wǎng)絡(luò)的關(guān)系 530次閱讀
- 全連接神經(jīng)網(wǎng)絡(luò)的基本原理和案例實(shí)現(xiàn) 863次閱讀
- 卷積神經(jīng)網(wǎng)絡(luò)中池化層的作用 462次閱讀
- 神經(jīng)網(wǎng)絡(luò)在圖像識(shí)別中的應(yīng)用 394次閱讀
- 卷積神經(jīng)網(wǎng)絡(luò)結(jié)構(gòu)_卷積神經(jīng)網(wǎng)絡(luò)訓(xùn)練過(guò)程 1.8w次閱讀
- 卷積神經(jīng)網(wǎng)絡(luò)中全連接層作用理解總結(jié) 2w次閱讀
- 詳解卷積神經(jīng)網(wǎng)絡(luò)卷積過(guò)程 1.7w次閱讀
- 基于ARM在cpu上做神經(jīng)網(wǎng)絡(luò)加速 2458次閱讀
- 一種用于圖像分類的卷積神經(jīng)網(wǎng)絡(luò) 9742次閱讀
- 深度學(xué)習(xí):卷積神經(jīng)網(wǎng)絡(luò)在每一層提取到的特征以及訓(xùn)練的過(guò)程 2.6w次閱讀
- 卷積神經(jīng)網(wǎng)絡(luò)CNN架構(gòu)分析-LeNet 2687次閱讀
- 【科普】卷積神經(jīng)網(wǎng)絡(luò)(CNN)基礎(chǔ)介紹 1.1w次閱讀
下載排行
本周
- 1電子電路原理第七版PDF電子教材免費(fèi)下載
- 0.00 MB | 1490次下載 | 免費(fèi)
- 2單片機(jī)典型實(shí)例介紹
- 18.19 MB | 93次下載 | 1 積分
- 3S7-200PLC編程實(shí)例詳細(xì)資料
- 1.17 MB | 27次下載 | 1 積分
- 4筆記本電腦主板的元件識(shí)別和講解說(shuō)明
- 4.28 MB | 18次下載 | 4 積分
- 5開關(guān)電源原理及各功能電路詳解
- 0.38 MB | 10次下載 | 免費(fèi)
- 6基于AT89C2051/4051單片機(jī)編程器的實(shí)驗(yàn)
- 0.11 MB | 4次下載 | 免費(fèi)
- 7基于單片機(jī)和 SG3525的程控開關(guān)電源設(shè)計(jì)
- 0.23 MB | 3次下載 | 免費(fèi)
- 8基于單片機(jī)的紅外風(fēng)扇遙控
- 0.23 MB | 3次下載 | 免費(fèi)
本月
- 1OrCAD10.5下載OrCAD10.5中文版軟件
- 0.00 MB | 234313次下載 | 免費(fèi)
- 2PADS 9.0 2009最新版 -下載
- 0.00 MB | 66304次下載 | 免費(fèi)
- 3protel99下載protel99軟件下載(中文版)
- 0.00 MB | 51209次下載 | 免費(fèi)
- 4LabView 8.0 專業(yè)版下載 (3CD完整版)
- 0.00 MB | 51043次下載 | 免費(fèi)
- 5555集成電路應(yīng)用800例(新編版)
- 0.00 MB | 33562次下載 | 免費(fèi)
- 6接口電路圖大全
- 未知 | 30320次下載 | 免費(fèi)
- 7Multisim 10下載Multisim 10 中文版
- 0.00 MB | 28588次下載 | 免費(fèi)
- 8開關(guān)電源設(shè)計(jì)實(shí)例指南
- 未知 | 21539次下載 | 免費(fèi)
總榜
- 1matlab軟件下載入口
- 未知 | 935053次下載 | 免費(fèi)
- 2protel99se軟件下載(可英文版轉(zhuǎn)中文版)
- 78.1 MB | 537791次下載 | 免費(fèi)
- 3MATLAB 7.1 下載 (含軟件介紹)
- 未知 | 420026次下載 | 免費(fèi)
- 4OrCAD10.5下載OrCAD10.5中文版軟件
- 0.00 MB | 234313次下載 | 免費(fèi)
- 5Altium DXP2002下載入口
- 未知 | 233046次下載 | 免費(fèi)
- 6電路仿真軟件multisim 10.0免費(fèi)下載
- 340992 | 191183次下載 | 免費(fèi)
- 7十天學(xué)會(huì)AVR單片機(jī)與C語(yǔ)言視頻教程 下載
- 158M | 183277次下載 | 免費(fèi)
- 8proe5.0野火版下載(中文版免費(fèi)下載)
- 未知 | 138039次下載 | 免費(fèi)
評(píng)論
查看更多