資料介紹
Table of Contents
ADXL362 - No-OS Driver for Microchip Microcontroller Platforms
Supported Devices
Evaluation Boards
Overview
The ADXL362 is an ultralow power, 3-axis MEMS accelerometer that consumes less than 2 μA at a 100 Hz output data rate and 270 nA when in motion triggered wake-up mode. Unlike accelerometers that use power duty cycling to achieve low power consumption, the ADXL362 does not alias input signals by undersampling; it samples the full bandwidth of the sensor at all data rates.
The ADXL362 always provides 12-bit output resolution; 8-bit formatted data is also provided for more efficient single-byte transfers when a lower resolution is sufficient. Measurement ranges of ±2 g, ±4 g, and ±8 g are available, with a resolution of 1 mg/LSB on the ±2 g range. For applications where a noise level lower than the normal 550 μg/√Hz of the ADXL362 is desired, either of two lower noise modes (down to 175 μg/√Hz typical) can be selected at minimal increase in supply current.
In addition to its ultralow power consumption, the ADXL362 has many features to enable true system level power reduction. It includes a deep multimode output FIFO, a built-in micropower temperature sensor, and several activity detection modes including adjustable threshold sleep and wake-up operation that can run as low as 270 nA at a 6 Hz (approximate) measurement rate. A pin output is provided to directly control an external switch when activity is detected, if desired. In addition, the ADXL362 has provisions for external control of sampling time and/or an external clock.
The ADXL362 operates on a wide 1.6 V to 3.5 V supply range, and can interface, if necessary, to a host operating on a separate, lower supply voltage. ADXL362 is available in a 3 mm × 3.25 mm × 1.06 mm package.
Applications
The goal of this project (Microcontroller No-OS) is to be able to provide reference projects for lower end processors, which can't run Linux, or aren't running a specific operating system, to help those customers using microcontrollers with ADI parts. Here you can find a generic driver which can be used as a base for any microcontroller platform and also specific drivers for different microcontroller platforms.
Driver Description
The driver contains two parts:
- The driver for the ADXL362 part, which may be used, without modifications, with any microcontroller.
- The Communication Driver, where the specific communication functions for the desired type of processor and communication protocol have to be implemented. This driver implements the communication with the device and hides the actual details of the communication protocol to the ADI driver.
The Communication Driver has a standard interface, so the ADXL362 driver can be used exactly as it is provided.
There are three functions which are called by the ADXL362 driver:
- SPI_Init() – initializes the communication peripheral.
- SPI_Write() – writes data to the device.
- SPI_Read() – reads data from the device.
SPI driver architecture
The following functions are implemented in this version of ADXL362 driver:
Function | Description |
---|---|
char ADXL362_Init(void) | Initializes the device. |
void ADXL362_SetRegisterValue(unsigned short registerValue, unsigned char registerAddress, unsigned char bytesNumber) | Writes data into a register. |
void ADXL362_GetRegisterValue(unsigned char *pReadData, unsigned char registerAddress, unsigned char bytesNumber) | Performs a burst read of a specified number of registers. |
void ADXL362_GetFifoValue(unsigned char *pBuffer, unsigned short bytesNumber) | Reads multiple bytes from the device's FIFO buffer. |
void ADXL362_SoftwareReset(void) | Resets the device via SPI communication bus. |
void ADXL362_SetPowerMode(unsigned char pwrMode) | Places the device into standby/measure mode. |
void ADXL362_SetRange(unsigned char gRange) | Selects the measurement range. |
void ADXL362_SetOutputRate(unsigned char outRate) | Selects the Output Data Rate of the device. |
void ADXL362_GetXyz(short *x, short *y, short *z) | Reads the 3-axis raw data from the accelerometer. |
void ADXL362_GetGxyz(float* x, float* y, float* z) | Reads the 3-axis raw data from the accelerometer and converts it to g. |
float ADXL362_ReadTemperature(void) | Reads the temperature of the device. |
void ADXL362_FifoSetup(unsigned char mode, unsigned short waterMarkLvl, unsigned char enTempRead) | Configures the FIFO feature. |
void ADXL362_SetupActivityDetection(unsigned char refOrAbs, unsigned short threshold, unsigned char time) | Configures activity detection. |
void ADXL362_SetupInactivityDetection(unsigned char refOrAbs, unsigned short threshold, unsigned short time) | Configures inactivity detection. |
HW Platform(s):
Downloads
- PmodACL2 Demo for PIC32MX320F128H: https://github.com/analogdevicesinc/no-OS/tree/master/Microchip/PIC32MX320F128H/PmodACL2
- PIC32MX320F128H Common Drivers: https://github.com/analogdevicesinc/no-OS/tree/master/Microchip/PIC32MX320F128H/Common
Digilent Cerebot MX3cK Quick Start Guide
This section contains a description of the steps required to run the ADXL362 demonstration project on a Digilent Cerebot MX3cK platform.
Required Hardware
Required Software
- The ADXL362 demonstration project for PIC32MX320F128H.
The ADXL362 demonstration project for PIC32MX320F128H consists of three parts: the ADXL362 Driver, the PmodACL2 Demo for PIC32MX320F128H and the PIC32MX320F128H Common Drivers.
All three parts have to be downloaded.
Hardware Setup
Reference Project Overview
The following commands were implemented in this version of ADXL362 reference project for Cerebot MX3cK board.
Command | Description |
---|---|
help? | Displays all available commands. |
id? | Displays device details. |
measure= | Start/stop the measurement process of the device. Accepted values: 0 - Stop measurement. 1 - Start measurement. |
temperature? | Displays the temperature. |
reset! | Resets the device. |
acceleration? | Displays the accelerations on XYZ axes. |
accelerationX? | Displays the acceleration on X axis. |
accelerationY? | Displays the acceleration on Y axis. |
accelerationZ? | Displays the acceleration on Z axis. |
activity? | Displays the activity status of the device. It runs for 5 motion detections. |
Commands can be executed using a serial terminal connected to the UART1 peripheral of PIC32MX320F128H.
The following image shows a generic list of commands in a serial terminal connected to processor’s UART peripheral.
Software Project Setup
This section presents the steps for developing a software application that will run on the Digilent Cerebot MX3cK development board for controlling and monitoring the operation of the ADI part.
- Run the MPLAB X integrated development environment.
- Choose to create a new project.
- In the Choose Project window select Microchip Embedded category, Standalone Project and press Next.
- In the Select Device window choose PIC32MX320F128H device and press Next.
- In the Select Tool window select the desired hardware tool and press Next.
- In the Select Compiler window chose the XC32 compiler and press Next.
- In the Select Project Name and Folder window choose a name and a location for the project.
- After the project is created, all the downloaded source files have to be copied in the project folder and included in the project.
- The project is ready to be built and downloaded on the development board.
Digilent Cerebot MC7 Quick Start Guide
This section contains a description of the steps required to run the ADXL362 demonstration project on a Digilent Cerebot MC7 platform.
Required Hardware
- PmodACL2
Required Software
Hardware Setup
Reference Project Overview
Following commands were implemented in this version of ADXL362 reference project for Cerebot MC7 board.
Command | Description |
---|---|
help? | Displays all available commands. |
id? | Device details. |
measure= | Start/stop the measure process of the device. Accepted values: 0 - 1. |
temp? | Read the temperature. |
reset= | Reset the device. |
acceleration? | Displays the accelerations on XYZ axis. |
activity? | Displays the activity status of the device. It runs for 5 motion detections. |
Commands can be executed using a serial terminal connected to the UART1 peripheral of dsPIC33FJ128MC706A.
The following image shows a list of commands in a serial terminal connected to processor’s UART peripheral.
Software Project Setup
This section presents the steps for developing a software application that will run on the Digilent Cerebot MC7 development board for controlling and monitoring the operation of the ADI part.
- Run the MPLAB X integrated development environment.
- Choose to create a new project.
- In the Choose Project window select Microchip Embedded category, Standalone Project and press Next.
- In the Select Device window choose dsPIC33FJ128MC706A device and press Next.
- In the Select Tool window select the desired hardware tool and press Next.
- In the Select Compiler window chose the XC16 compiler and press Next.
- In the Select Project Name and Folder window choose a name and a location for the project.
- After the project is created, the source files have to be copied in the project folder and included in the project.
- The project is ready to be built and downloaded on the development board.
Digilent Cerebot MX3cK Quick Start Guide - chipKIT Project
This section contains a description of the steps required to run the ADXL362 chipKIT demonstration project on a Digilent Cerebot MX3cK platform.
Required Hardware
- PmodACL2
Required Software
Hardware Setup
Reference Project Overview
Following commands were implemented in this version of ADXL362 chipKIT reference project for Cerebot MX3cK board.
Command | Description |
---|---|
help? | Displays all available commands. |
id? | Device details. |
measure= | Start/stop the measure process of the device. Accepted values: 0 - 1. |
temp? | Read the temperature. |
reset= | Reset the device. |
acceleration? | Displays the accelerations on XYZ axis. |
activity? | Displays the activity status of the device. It runs for 5 motion detections. |
Commands can be executed using the serial monitor.
Carriage return has to be selected as a line ending character. The required baud rate is 9600 baud.
The following image shows a list of commands in the serial monitor.
Software Project Setup
This section presents the steps for developing a chipKIT application that will run on the Digilent Cerebot MX3cK development board for controlling and monitoring the operation of the ADI part.
- Under your Sketchbook directory create a folder called “Libraries”; this folder may already exist.
- Unzip the downloaded file in the libraries folder.
- Run the MPIDE environment.
- You should see the new library under Sketch→Import Library, under Contributed.
- Also you should see under File→Examples the demo project for the ADI library.
- Select the ADIDriver example.
- Select the Cerebot MX3cK board from Tools→Board.
- Select the corresponding Serial Communication Port from Tools→Serial Port
- The project is ready to be uploaded on the development board.
More information
- Example questions:
- An error occurred while fetching this feed: http://ez.analog.com/community/feeds/allcontent/atom?community=2077
- AD5160-適用于瑞薩微控制器平臺的無操作系統驅動程序
- AD7156-適用于單片機平臺的無操作系統驅動程序
- AD5160-適用于微芯片微控制器平臺的無操作系統驅動程序
- AD5628-適用于微芯片微控制器平臺的無操作系統驅動程序
- AD7303-適用于單片機平臺的無操作系統驅動程序
- AD7091R-適用于單片機平臺的無操作系統驅動程序
- AD5541A-適用于瑞薩微控制器平臺的無操作系統驅動程序
- AD7193-適用于單片機平臺的無操作系統驅動程序
- ADXL345-適用于單片機平臺的無操作系統驅動程序
- AD7780-適用于單片機平臺的無操作系統驅動程序
- AD5781-適用于瑞薩微控制器平臺的無操作系統驅動程序
- ADT7420-適用于單片機平臺的無操作系統驅動程序
- ADP5589-適用于單片機平臺的無操作系統驅動程序
- ADXL362-用于瑞薩微控制器平臺的無操作系統驅動程序
- ADXRS453-適用于單片機平臺的無操作系統驅動程序
- 國產RT-thread操作系統在國民技術單片機上移植 395次閱讀
- 了解和使用無操作系統和平臺驅動程序 1066次閱讀
- 51單片機操作系統開發中有什么技巧會碰到什么問題 2898次閱讀
- 單片機多任務處理方案 9318次閱讀
- 51單片機實時操作系統的基本結構與模式 5401次閱讀
- 單片機和嵌入式系統linux的區別 6890次閱讀
- 適用于測控領域的4種實時操作系統對比分析 3531次閱讀
- 淺談電腦驅動程序的工作原理 詳解電腦驅動程序意義 2.9w次閱讀
- 基于嵌入式Linux內核的系統設備驅動程序開發設計 1113次閱讀
- 單片機與嵌入式系統有什么區別和聯系? 1.4w次閱讀
- 一文看懂單片機與PLC程序設計的區別 7334次閱讀
- Windows應用程序,操作系統,計算機硬件之間的相互關系 1.2w次閱讀
- 51單片機DS1302實時時鐘驅動程序 9255次閱讀
- 基于K9F5608A的MCS-51單片機驅動程序 1966次閱讀
- 基于ADC081S051與51單片機的接口電路及驅動程序 4378次閱讀
下載排行
本周
- 1電子電路原理第七版PDF電子教材免費下載
- 0.00 MB | 1491次下載 | 免費
- 2單片機典型實例介紹
- 18.19 MB | 95次下載 | 1 積分
- 3S7-200PLC編程實例詳細資料
- 1.17 MB | 27次下載 | 1 積分
- 4筆記本電腦主板的元件識別和講解說明
- 4.28 MB | 18次下載 | 4 積分
- 5開關電源原理及各功能電路詳解
- 0.38 MB | 11次下載 | 免費
- 6100W短波放大電路圖
- 0.05 MB | 4次下載 | 3 積分
- 7基于單片機和 SG3525的程控開關電源設計
- 0.23 MB | 4次下載 | 免費
- 8基于AT89C2051/4051單片機編程器的實驗
- 0.11 MB | 4次下載 | 免費
本月
- 1OrCAD10.5下載OrCAD10.5中文版軟件
- 0.00 MB | 234313次下載 | 免費
- 2PADS 9.0 2009最新版 -下載
- 0.00 MB | 66304次下載 | 免費
- 3protel99下載protel99軟件下載(中文版)
- 0.00 MB | 51209次下載 | 免費
- 4LabView 8.0 專業版下載 (3CD完整版)
- 0.00 MB | 51043次下載 | 免費
- 5555集成電路應用800例(新編版)
- 0.00 MB | 33562次下載 | 免費
- 6接口電路圖大全
- 未知 | 30320次下載 | 免費
- 7Multisim 10下載Multisim 10 中文版
- 0.00 MB | 28588次下載 | 免費
- 8開關電源設計實例指南
- 未知 | 21539次下載 | 免費
總榜
- 1matlab軟件下載入口
- 未知 | 935053次下載 | 免費
- 2protel99se軟件下載(可英文版轉中文版)
- 78.1 MB | 537793次下載 | 免費
- 3MATLAB 7.1 下載 (含軟件介紹)
- 未知 | 420026次下載 | 免費
- 4OrCAD10.5下載OrCAD10.5中文版軟件
- 0.00 MB | 234313次下載 | 免費
- 5Altium DXP2002下載入口
- 未知 | 233046次下載 | 免費
- 6電路仿真軟件multisim 10.0免費下載
- 340992 | 191183次下載 | 免費
- 7十天學會AVR單片機與C語言視頻教程 下載
- 158M | 183277次下載 | 免費
- 8proe5.0野火版下載(中文版免費下載)
- 未知 | 138039次下載 | 免費
評論
查看更多