完善資料讓更多小伙伴認識你,還能領取20積分哦,立即完善>
標簽 > 伺服系統
伺服系統又稱隨動系統,是用來精確地跟隨或復現某個過程的反饋控制系統。伺服系統使物體的位置、方位、狀態等輸出被控量能夠跟隨輸入目標(或給定值)的任意變化的自動控制系統。
伺服系統(servomechanism)又稱隨動系統,是用來精確地跟隨或復現某個過程的反饋控制系統。伺服系統使物體的位置、方位、狀態等輸出被控量能夠跟隨輸入目標(或給定值)的任意變化的自動控制系統。它的主要任務是按控制命令的要求、對功率進行放大、變換與調控等處理,使驅動裝置輸出的力矩、速度和位置控制非常靈活方便。在很多情況下,伺服系統專指被控制量(系統的輸出量)是機械位移或位移速度、加速度的反饋控制系統,其作用是使輸出的機械位移(或轉角)準確地跟蹤輸入的位移(或轉角),其結構組成和其他形式的反饋控制系統沒有原則上的區別。伺服系統最初用于國防軍工, 如火炮的控制, 船艦、飛機的自動駕駛,導彈發射等,后來逐漸推廣到國民經濟的許多部門,如自動機床、無線跟蹤控制等。
伺服系統(servomechanism)又稱隨動系統,是用來精確地跟隨或復現某個過程的反饋控制系統。伺服系統使物體的位置、方位、狀態等輸出被控量能夠跟隨輸入目標(或給定值)的任意變化的自動控制系統。它的主要任務是按控制命令的要求、對功率進行放大、變換與調控等處理,使驅動裝置輸出的力矩、速度和位置控制非常靈活方便。在很多情況下,伺服系統專指被控制量(系統的輸出量)是機械位移或位移速度、加速度的反饋控制系統,其作用是使輸出的機械位移(或轉角)準確地跟蹤輸入的位移(或轉角),其結構組成和其他形式的反饋控制系統沒有原則上的區別。伺服系統最初用于國防軍工, 如火炮的控制, 船艦、飛機的自動駕駛,導彈發射等,后來逐漸推廣到國民經濟的許多部門,如自動機床、無線跟蹤控制等。
主要作用
1、以小功率指令信號去控制大功率負載;
2、在沒有機械連接的情況下,由輸入軸控制位于遠處的輸出軸,實現遠距同步傳動;
3、使輸出機械位移精確地跟蹤電信號,如記錄和指示儀表等。
主要分類
從系統組成元件的性質來看,有電氣伺服系統、液壓伺服系統和電氣-液壓伺服系統及電氣-電氣伺服系統等;從系統輸出量的物理性質來看,有速度或加速度伺服系統和位置伺服系統等;從系統中所包含的元件特性和信號作用特點來看,有模擬式伺服系統和數字式伺服系統;從系統的結構特點來看,有單回伺服系統、多回伺服系統和開環伺服系統、閉環伺服系統。伺服系統按其驅動元件劃分,有步進式伺服系統、直流電動機(簡稱直流電機)伺服系統、交流電動機(簡稱交流電機)伺服系統。
性能要求
對伺服系統的基本要求有穩定性、精度和快速響應性。穩定性好:作用在系統上的擾動消失后,系統能夠恢復到原來的穩定狀態下運行或者在輸入指令信號作用下,系統能夠達到新的穩定運行狀態的能力,在給定輸入或外界干擾作用下,能在短暫的調節過程后到達新的或者回復到原有平衡狀態;精度高:伺服系統的精度是指輸出量能跟隨輸入量的精確程度。作為精密加工的數控機床,要求的定位精度或輪廓加工精度通常都比較高,允許的偏差一般都在 0.01~0.00lmm之間;快速響應性好:有兩方面含義,一是指動態響應過程中,輸出量隨輸入指令信號變化的迅速程度,二是指動態響應過程結束的迅速程度。快速響應性是伺服系統動態品質的標志之一,即要求跟蹤指令信號的響應要快,一方面要求過渡過程時間短,一般在200ms以內,甚至小于幾十毫秒;另一方面,為滿足超調要求,要求過渡過程的前沿陡,即上升率要大。節能高:由于伺服系統的快速相應,注塑機能夠根據自身的需要對供給進行快速的調整,能夠有效提高注塑機的電能的利用率,從而達到高效節能。
主要結構
伺服系統主要由三部分組成:控制器,功率驅動裝置,反饋裝置和電動機。控制器按照數控系統的給定值和通過反饋裝置檢測的實際運行值的差,調節控制量;功率驅動裝置作為系統的主回路,一方面按控制量的大小將電網中的電能作用到電動機之上,調節電動機轉矩的大小,另一方面按電動機的要求把恒壓恒頻的電網供電轉換為電動機所需的交流電或直流電;電動機則按供電大小拖動機械運轉。
主要特點
1、精確的檢測裝置:以組成速度和位置閉環控制;2、有多種反饋比較原理與方法:根據檢測裝置實現信息反饋的原理不同,伺服系統反饋比較的方法也不相同。常用的有脈沖比較、相位比較和幅值比較3種;3、高性能的伺服電動機(簡稱伺服電機):用于高效和復雜型面加工的數控機床,伺服系統將經常處于頻繁的啟動和制動過程中。要求電機的輸出力矩與轉動慣量的比值大,以產生足夠大的加速或制動力矩。要求伺服電機在低速時有足夠大的輸出力矩且運轉平穩,以便在與機械運動部分連接中盡量減少中間環節;4、寬調速范圍的速度調節系統,即速度伺服系統:從系統的控制結構看,數控機床的位置閉環系統可看作是位置調節為外環、速度調節為內環的雙閉環自動控制系統,其內部的實際工作過程是把位置控制輸入轉換成相應的速度給定信號后,再通過調速系統驅動伺服電機,實現實際位移。數控機床的主運動要求調速性能也比較高,因此要求伺服系統為高性能的寬調速系統。
主要參數
衡量伺服系統性能的主要指標有頻帶寬度和精度。頻帶寬度簡稱帶寬,由系統頻率響應特性來規定,反映伺服系統的跟蹤的快速性。帶寬越大,快速性越好。伺服系統的帶寬主要受控制對象和執行機構的慣性的限制。慣性越大,帶寬越窄。一般伺服系統的帶寬小于15赫,大型設備伺服系統的帶寬則在1~2赫以下。自20世紀70年代以來,由于發展了力矩電機及高靈敏度測速機,使伺服系統實現了直接驅動,革除或減小了齒隙和彈性變形等非線性因素,使帶寬達到50赫,并成功應用在遠程導彈、人造衛星、精密指揮儀等場所。伺服系統的精度主要決定于所用的測量元件的精度。因此,在伺服系統中必須采用高精度的測量元件,如精密電位器、自整角機、旋轉變壓器、光電編碼器、光柵、磁柵和球柵等。此外,也可采取附加措施來提高系統的精度,例如將測量元件(如自整角機)的測量軸通過減速器與轉軸相連,使轉軸的轉角得到放大,來提高相對測量精度。采用這種方案的伺服系統稱為精測粗測系統或雙通道系統。通過減速器與轉軸嚙合的測角線路稱精讀數通道,直接取自轉軸的測角線路稱粗讀數通道。
典型機型
20世紀80年代以來,隨著集成電路、電力電子技術和交流可變速驅動技術的發展,永磁交流伺服驅動技術有了突出的發展,各國著名電氣廠商相繼推出各自的交流伺服電動機和伺服驅動器系列產品并不斷完善和更新。交流伺服系統已成為當代高性能伺服系統的主要發展方向,使原來的直流伺服面臨被淘汰的危機。90年代以后,世界各國已經商品化了的交流伺服系統是采用全數字控制的正弦波電動機伺服驅動。交流伺服驅動裝置在傳動領域的發展日新月異。永磁交流伺服電動機同直流伺服電動機比較:主要優勢:1、無電刷和換向器,因此工作可靠,對維護和保養要求低;2、定子繞組散熱比較方便;3、慣量小,易于提高系統的快速性;4、適應于高速大力矩工作狀態;5、同功率下有較小的體積和重量。主要劣勢:1、永磁交流伺服系統采用了編碼器檢測磁極位置,算法復雜;2、交流伺服系統維修比較麻煩,因為電路結構復雜;3、交流伺服驅動器可靠性不如直流伺服,因為板件太過于精密。到20世紀80年代中后期,各公司都已有完整的系列產品。整個伺服裝置市場都轉向了交流系統。早期的模擬系統在諸如零漂、抗干擾、可靠性、精度和柔性等方面存在不足,尚不能完全滿足運動控制的要求,隨著微處理器、新型數字信號處理器(DSP)的應用,出現了數字控制系統,控制部分可完全由軟件進行。高性能的電伺服系統大多采用永磁同步型交流伺服電動機,控制驅動器多采用快速、準確定位的全數字位置伺服系統。
伺服系統的組成和原理
伺服系統亦稱隨動系統,屬于自動控制系統,用來控制被控對象的位置或轉角,使其能自動地、連續地、精確地復現輸入指令的變化規律。
隨著微電子、電力半導體和電機制造技術的進步,高性能伺服系統在激光加工、機器人、數控車床、大規模集成電路制造辦公自動化設備、雷達等高科技領域都有廣泛應用。
因此,開展伺服系統的研究具有現實意義。
工具/原料
永磁伺服電動機
編碼器
PLC
方法/步驟
伺服系統組成:
系統主要由觸摸屏、PLC、伺服驅動器、永磁同步伺服電機組成,其中伺服電機是運動的執行機構,對其進行位置、速度和電流三環控制,從而達到用戶的功能要求。
永磁同步伺服電機:
伺服電動機又稱執行電動機,在自動控制系統中,用作執行元件,把所收到的電信號轉換成電動機軸上的角位移或角速度輸出。
分為直流和交流伺服電動機兩大類,交流伺服電動機又分為異步伺服電動機和同步伺服電動機。
(1)調速范圍寬,改變控制電壓,要求伺服電動機的轉速在寬廣的范圍內連續調節;
(2)機械特性和調節特性為線性,線性的機械特性和調節特性有利于提高控制系統的精度;
(3)無“自轉”現象,伺服電動機在控制電壓消失后,應立即停轉;
(4)動態響應快,伺服電動機的機電時間常數要小,而它的堵轉轉矩要大,轉動慣量要小小,改變控制電壓時電機的轉速能快速響應。
永磁同步電動機的空間矢量控制:
由于交流永磁伺服電機(PMSM) 采用的是永久磁鐵勵磁,其磁場可以視為是恒定,同時交流永磁伺服電機的電機轉速就是同步轉速即其轉差為零,這些條件使得交流伺服驅動器在驅動交流永磁伺服電機時的數學模型的復雜程度得以大大的降低。
如圖所示,可以看出,系統是基于測量電機的兩相電流反饋( la、lb) 和電機位置。將測得的相電流(la 、lb ) 結合位置信息,經坐標變化(從a ,b ,c 坐標系轉換到轉子d ,q 坐標系) ,得到 ld,lq 分量,分別進入各自的電流調節器。電流調節器的輸出經過反向坐標變化(從d ,q 坐標系轉換到a ,b ,c 坐標系) ,得到三相電壓指令。控制芯片通過這三相電壓指令,經過反向、延時后,得到6 路PWM 波輸出到功率器件,控制電機運行。系統在不同指令輸入方式下,指令和反饋通過相應的控制調節器,得到下一級的參考指令。在電流環中,d ,q 軸的轉矩電流分量( lq)是速度控制調節器的輸出或外部給定。而一般情況下,磁通分量為零( ld= 0) ,但是當速度大于限定值時,可以通過弱磁( ld《 0) ,得到更高的速度值。
位置信號的檢測-編碼器:
編碼器(encoder)是將信號或數據進行編制、轉換為可用以通訊、傳輸和存儲的信號形式的設備。編碼器把角位移或直線位移轉換成電信號,前者成為碼盤,后者稱碼尺。按照讀出方式編碼器可以分為接觸式和非接觸式兩種.接觸式采用電刷輸出,以電刷接觸導電區或絕緣區來表示代碼的狀態是“1”還是“0”;非接觸式的接受敏感元件是光敏元件或磁敏元件,采用光敏元件時以透光區和不透光區來表示代碼的狀態是“1”還是“0”,通過“1”和“0”的二進制編碼來將采集來的物理信號轉換為機器碼可讀取的電信號用以通訊、傳輸和儲存。
總結:
伺服系統選擇控制方式,進行參數設置,完成伺服系統的相應控制過程。
設置合適的參數,使輸出能夠快速準確地復現輸入信號,滿足了伺服系統的高速、高精度的要求。
注意事項
伺服系統亦稱隨動系統,屬于自動控制系統,用來控制被控對象的位置或轉角,使其能自動地、連續地、精確地復現輸入指令的變化規律。
伺服電機是運動的執行機構,對其進行位置、速度和電流三環控制
編碼器把角位移或直線位移轉換成電信號
一、伺服電機的作用與特點 伺服電機(Servo motor),作為伺服系統中的關鍵組件,扮演著控制機械元件運轉的重要角色。它是一種高精度、高響應速度的電...
松下伺服驅動器慣量比的整定是一個重要的過程,它直接影響伺服系統的穩定性和控制精度。以下是整定松下伺服驅動器慣量比的一般步驟和注意事項: 一、準備階段 了...
一、變頻器的應用 變頻器主要用于對電機的速度和力矩進行控制,特別適用于那些對速度控制和力矩控制要求不是很高的場合。它通過改變電源的頻率和電壓來調節電機的...
伺服系統的基本概念是準確、精確、快速定位。這一概念貫穿于伺服系統的設計理念和運行機制中。為了實現這一目標,伺服系統采用了多種先進的控制策略和技術手段。其...
伺服系統是一種高精度、高響應速度的控制系統,廣泛應用于工業自動化、機器人、航空航天等領域。伺服系統的性能直接影響到設備的運行精度和穩定性。 伺服電機的性...
數控系統是數控機床的核心部分,它負責接收加工程序,進行數據處理和運算,控制機床各軸的運動,實現對工件的加工。根據數控系統的結構和功能,我們可以將其分為三...
伺服編碼器線是否必須使用屏蔽線,這個問題的答案取決于具體的應用場景和系統要求。在某些情況下,使用屏蔽線可以提高系統的穩定性和可靠性,而在其他情況下,屏蔽...
伺服編碼器分辨率是指編碼器能夠檢測到的最小角度或位置變化。在伺服系統中,編碼器用于測量電機軸或負載的位置和速度,以實現精確控制。分辨率越高,編碼器能夠檢...
伺服電機編碼器的分辨率是衡量編碼器性能的重要指標之一,它直接影響到伺服系統的精度和穩定性。本文將詳細介紹伺服電機編碼器的分辨率,包括其定義、分類、影響因...
Canopen轉Profient神奇聯姻!伺服界的甜蜜CP,生產效率飆升秘籍
實現無縫通信,優化生產流程穩聯技術Profinet轉Canopen(WL-ABC3033)網關在不同通信協議之間搭建起了一座橋梁,使得原本使用Profi...
時間是最不偏私的,給任何人都是二十四小時;但時間又是最偏私的,給任何人的都不是二十四小時。”赫胥黎的這句名言,深刻揭示了時間的公平與珍貴。在高端制造業這...
早在11世紀南美人就已經開始利用野生天然橡膠,直到1839年美國人固特異發現硫磺與橡膠共熱可以增加橡膠彈性,極大提升了使用性能,橡膠工業的大門從此打開。...
盡管我國在上世紀七十年代就開始了相關研究,但目前國內的機器人產業仍然相對薄弱,國產化率偏低,尤其是占成本比重較大、利潤較高的上游核心零部件如減速器、控制...
編輯推薦廠商產品技術軟件/工具OS/語言教程專題
電機控制 | DSP | 氮化鎵 | 功率放大器 | ChatGPT | 自動駕駛 | TI | 瑞薩電子 |
BLDC | PLC | 碳化硅 | 二極管 | OpenAI | 元宇宙 | 安森美 | ADI |
無刷電機 | FOC | IGBT | 逆變器 | 文心一言 | 5G | 英飛凌 | 羅姆 |
直流電機 | PID | MOSFET | 傳感器 | 人工智能 | 物聯網 | NXP | 賽靈思 |
步進電機 | SPWM | 充電樁 | IPM | 機器視覺 | 無人機 | 三菱電機 | ST |
伺服電機 | SVPWM | 光伏發電 | UPS | AR | 智能電網 | 國民技術 | Microchip |
開關電源 | 步進電機 | 無線充電 | LabVIEW | EMC | PLC | OLED | 單片機 |
5G | m2m | DSP | MCU | ASIC | CPU | ROM | DRAM |
NB-IoT | LoRa | Zigbee | NFC | 藍牙 | RFID | Wi-Fi | SIGFOX |
Type-C | USB | 以太網 | 仿真器 | RISC | RAM | 寄存器 | GPU |
語音識別 | 萬用表 | CPLD | 耦合 | 電路仿真 | 電容濾波 | 保護電路 | 看門狗 |
CAN | CSI | DSI | DVI | Ethernet | HDMI | I2C | RS-485 |
SDI | nas | DMA | HomeKit | 閾值電壓 | UART | 機器學習 | TensorFlow |
Arduino | BeagleBone | 樹莓派 | STM32 | MSP430 | EFM32 | ARM mbed | EDA |
示波器 | LPC | imx8 | PSoC | Altium Designer | Allegro | Mentor | Pads |
OrCAD | Cadence | AutoCAD | 華秋DFM | Keil | MATLAB | MPLAB | Quartus |
C++ | Java | Python | JavaScript | node.js | RISC-V | verilog | Tensorflow |
Android | iOS | linux | RTOS | FreeRTOS | LiteOS | RT-THread | uCOS |
DuerOS | Brillo | Windows11 | HarmonyOS |