完善資料讓更多小伙伴認識你,還能領取20積分哦,立即完善>
標簽 > 摩爾定律
摩爾定律是由英特爾(Intel)創始人之一戈登·摩爾(Gordon Moore)提出來的。其內容為:當價格不變時,集成電路上可容納的元器件的數目,約每隔18-24個月便會增加一倍,性能也將提升一倍。
摩爾定律是由英特爾(Intel)創始人之一戈登·摩爾(Gordon Moore)提出來的。其內容為:當價格不變時,集成電路上可容納的元器件的數目,約每隔18-24個月便會增加一倍,性能也將提升一倍。換言之,每一美元所能買到的電腦性能,將每隔18-24個月翻一倍以上。這一定律揭示了信息技術進步的速度。
盡管這種趨勢已經持續了超過半個世紀,摩爾定律仍應該被認為是觀測或推測,而不是一個物理或自然法。預計定律將持續到至少2015年或2020年[1] 。然而,2010年國際半導體技術發展路線圖的更新增長已經放緩在2013年年底,之后的時間里晶體管數量密度預計只會每三年翻一番。
摩爾定律是由英特爾(Intel)創始人之一戈登·摩爾(Gordon Moore)提出來的。其內容為:當價格不變時,集成電路上可容納的元器件的數目,約每隔18-24個月便會增加一倍,性能也將提升一倍。換言之,每一美元所能買到的電腦性能,將每隔18-24個月翻一倍以上。這一定律揭示了信息技術進步的速度。
盡管這種趨勢已經持續了超過半個世紀,摩爾定律仍應該被認為是觀測或推測,而不是一個物理或自然法。預計定律將持續到至少2015年或2020年[1] 。然而,2010年國際半導體技術發展路線圖的更新增長已經放緩在2013年年底,之后的時間里晶體管數量密度預計只會每三年翻一番。
摩爾定律指引集成電路不斷發展。摩爾定律指出:“集成電路芯片上所集成的電路的數目,每隔18-24個月就翻一倍;微處理器的性能提高一倍,或價格下降一半。
Chiplet可以使用更可靠和更便宜的技術制造。較小的硅片本身也不太容易產生制造缺陷。此外,Chiplet芯片也不需要采用同樣的工藝,不同工藝制造的Ch...
從集成度而言,一般情況下, SOC 只集成 AP 之類的邏輯系統,而 SIP 集成了AP+mobileDDR,某種程度上說 SIP=SOC+DDR,隨著...
第三代半導體是以碳化硅SiC、氮化鎵GaN為主的寬禁帶半導體材料,具有高擊穿電場、高飽和電子速度、高熱導率、高電子密度、高遷移率、可承受大功率等特點。
可穿戴技術(wearable technology),最早是20世紀60年代由麻省理工學院媒體實驗室提出的創新技術。
50年前,英特爾創始人之一戈登·摩爾提出了摩爾定律:集成電路上可容納的電晶體(晶體管)數目,約每隔24個月便會增加一倍。最近幾十年,這個定律堪稱科技界的...
2018-03-09 標簽:摩爾定律 1.4萬 0
集成電路的設計十分復雜,動輒使用數百萬到數十億個邏輯門數量(gate count),每一個邏輯門和其他器件的電性參數必須同時達到標準,否則芯片可能無法正...
chiplet是什么意思?chiplet和SoC區別在哪里?一文讀懂chiplet
從 DARPA 的 CHIPS 項目到 Intel 的 Foveros,都把 chiplet 看成是未來芯片的重要基礎技術。簡單來說,chiplet 技...
本文,將為您講述摩爾定律下四十八載的芯片技術發展概況,并從中提煉得出每個發展階段所體現的摩爾定律。希望能夠幫大家了解一下芯片的發展史。
7納米制程節點將是半導體廠推進摩爾定律(Moores Law)的下一重要關卡。半導體進入7納米節點后,前段與后段制程皆將面臨更嚴峻的挑戰,半導體廠已加緊...
近年來,一些悲觀的媒體與專家開始擔憂人工智能的高速發展將會對人類自身的生存產生威脅,甚至連理論物理學家、《時間簡史》的作者霍金都曾公開告誡大眾:“完全人...
根據Yole預測,到2023年,射頻前端模塊的SiP封裝市場規模將達到53億美元,復合增長率為11.3%。根據Accenture預計,到2026年全球5...
編輯推薦廠商產品技術軟件/工具OS/語言教程專題
電機控制 | DSP | 氮化鎵 | 功率放大器 | ChatGPT | 自動駕駛 | TI | 瑞薩電子 |
BLDC | PLC | 碳化硅 | 二極管 | OpenAI | 元宇宙 | 安森美 | ADI |
無刷電機 | FOC | IGBT | 逆變器 | 文心一言 | 5G | 英飛凌 | 羅姆 |
直流電機 | PID | MOSFET | 傳感器 | 人工智能 | 物聯網 | NXP | 賽靈思 |
步進電機 | SPWM | 充電樁 | IPM | 機器視覺 | 無人機 | 三菱電機 | ST |
伺服電機 | SVPWM | 光伏發電 | UPS | AR | 智能電網 | 國民技術 | Microchip |
開關電源 | 步進電機 | 無線充電 | LabVIEW | EMC | PLC | OLED | 單片機 |
5G | m2m | DSP | MCU | ASIC | CPU | ROM | DRAM |
NB-IoT | LoRa | Zigbee | NFC | 藍牙 | RFID | Wi-Fi | SIGFOX |
Type-C | USB | 以太網 | 仿真器 | RISC | RAM | 寄存器 | GPU |
語音識別 | 萬用表 | CPLD | 耦合 | 電路仿真 | 電容濾波 | 保護電路 | 看門狗 |
CAN | CSI | DSI | DVI | Ethernet | HDMI | I2C | RS-485 |
SDI | nas | DMA | HomeKit | 閾值電壓 | UART | 機器學習 | TensorFlow |
Arduino | BeagleBone | 樹莓派 | STM32 | MSP430 | EFM32 | ARM mbed | EDA |
示波器 | LPC | imx8 | PSoC | Altium Designer | Allegro | Mentor | Pads |
OrCAD | Cadence | AutoCAD | 華秋DFM | Keil | MATLAB | MPLAB | Quartus |
C++ | Java | Python | JavaScript | node.js | RISC-V | verilog | Tensorflow |
Android | iOS | linux | RTOS | FreeRTOS | LiteOS | RT-THread | uCOS |
DuerOS | Brillo | Windows11 | HarmonyOS |