完善資料讓更多小伙伴認識你,還能領取20積分哦,立即完善>
標簽 > 放大器電路
放大電路亦稱為放大器電路,它是使用最為廣泛的電子電路之一、也是構成其他電子電路的基礎單元電路。所謂放大,就是將輸入的微弱信號(簡稱信號,指變化的電壓、電流等)放大到所需要的幅度值且與原輸入信號變化規律一致的信號,即進行不失真的放大。
放大電路亦稱為放大器電路,它是使用最為廣泛的電子電路之一、也是構成其他電子電路的基礎單元電路。所謂放大,就是將輸入的微弱信號(簡稱信號,指變化的電壓、電流等)放大到所需要的幅度值且與原輸入信號變化規律一致的信號,即進行不失真的放大。只有在不失真的情況下放大才有意義。放大電路的本質是能量的控制和轉換,根據輸入回路和輸出回路的公共端不同,放大電路有三種基本形式:共射放大電路、共集放大電路和共基放大電路
實際的放大電路通常是由信號源、晶體三極管構成的放大器及負載組成。
放大電路亦稱為放大器電路,它是使用最為廣泛的電子電路之一、也是構成其他電子電路的基礎單元電路。所謂放大,就是將輸入的微弱信號(簡稱信號,指變化的電壓、電流等)放大到所需要的幅度值且與原輸入信號變化規律一致的信號,即進行不失真的放大。只有在不失真的情況下放大才有意義。放大電路的本質是能量的控制和轉換,根據輸入回路和輸出回路的公共端不同,放大電路有三種基本形式:共射放大電路、共集放大電路和共基放大電路
實際的放大電路通常是由信號源、晶體三極管構成的放大器及負載組成。
性能指標
電壓放大倍數、輸入電阻和輸出電阻是放大電路的三個主要性能指標,分析這三個指標最常用的方法是微變等效電路法,這是一種在小信號放大條件下,將非線性的三極管放大電路等效為線性放大電路。
放大倍數
放大倍數又稱增益,它是衡量放大電路放大能力的指標。根據需要處理的輸入和輸出量的不同,放大倍數有電壓、電流、互阻、互導和功率放大倍數等,其中電壓放大倍數應用最多。
輸入電阻
放大電路的輸入電阻是從輸入端向放大電路內看進去的等效電阻,它等于放大電路輸出端接實際負載電阻后,輸入電壓與輸入電流之比,即Ri=Ui/Ii。對于信號源來說,輸入電阻就是它的等效負載。
輸入電阻的大小反映了放大電路對信號源的影響程度。輸入電阻越大,放大電路從信號源汲取的電流(即輸入電流)就越小,信號源內阻上的壓降就越小,其實際輸入電壓就越接近于信號源電壓,常稱為恒壓輸入。反之,當要求恒流輸入時,則必須使Ri《《Rs;若要求獲得最大功率輸入,則要求Ri=Rs,常稱為阻抗匹配。
輸出電阻
對負載而言,放大電路的輸出端可等效為一個信號源。輸出電阻越小,輸出電壓受負載的影響就越小,若Ro=0,則輸出電壓的大小將不受RL的大小影響,稱為恒壓輸出。當RL《《Ro時即可得到恒流輸出。因此,輸出電阻的大小反映了放大電路帶負載能力的大小。
運算放大器工作原理
運算放大器基本上可以算得上是模擬電路的基本需要了解的電路之一,而要想更好用好運放,透徹地了解運算放大器工作原理是無可避免,但是運放攻略太多,那不妨來試試這篇用電路圖作為主線的文章來帶你領略運算放大器的工作原理吧。
1.運算放大器工作原理綜述:
運算放大器組成的電路五花八門,令人眼花瞭亂,在分析運算放大器工作原理時倘沒有抓住核心,往往令人頭大。本文收集運放電路的應用電路,希望看完后有所收獲。但是在分析各個電路之前,還是先回憶一下兩個運放教材里必教的技能,就是“虛短”和“虛斷”。
“虛短”是指在分析運算放大器處于線性狀態時,可把兩輸入端視為等電位,這一特性稱為虛假短路,簡稱虛短。顯然不能將兩輸入端真正短路。
“虛斷”是指在分析運放處于線性狀態時,可以把兩輸入端視為等效開路,這一特性 稱為虛假開路,簡稱虛斷。顯然不能將兩輸入端真正斷路。
2.運算放大器工作原理經典電路圖一
圖一運算放大器的同向端接地=0V,反向端和同向端虛短,所以也是0V,反向輸入端輸入電阻很高,虛斷,幾乎沒有電流注入和流出,那么R1和R2相當于是串聯的,流過一個串聯電路中的每一只組件的電流是相同的,即流過R1的電流和流過R2的電流是相同的。流過R1的電流I1 = (Vi - V-)/R1 ……a 流過R2的電流I2 = (V- - Vout)/R2 ……b V- = V+ = 0 ……c I1 = I2 ……d 求解上面的初中代數方程得Vout = (-R2/R1)*Vi 這就是傳說中的反向放大器的輸入輸出關系式了。
3.運算放大器工作原理經典電路圖二
圖二中Vi與V-虛短,則 Vi = V- ……a 因為虛斷,反向輸入端沒有電流輸入輸出,通過R1和R2 的電流相等,設此電流為I,由歐姆定律得: I = Vout/(R1+R2) ……b Vi等于R2上的分壓, 即:Vi = I*R2 ……c 由abc式得Vout=Vi*(R1+R2)/R2 這就是傳說中的同向放大器的公式了。
4.運算放大器工作原理經典電路圖三
圖三中,由虛短知: V- = V+ = 0 ……a 由虛斷及基爾霍夫定律知,通過R2與R1的電流之和等于通過R3的電流,故 (V1 – V-)/R1 + (V2 – V-)/R2 = (Vout – V-)/R3 ……b 代入a式,b式變為V1/R1 + V2/R2 = Vout/R3 如果取R1=R2=R3,則上式變為Vout=V1+V2,這就是傳說中的加法器了。
(編輯者注)質疑:(V1 – V-)/R1 + (V2 – V-)/R2 = (V- – Vout)/R3 ……b 圖三公式中少了個負號?
5.運算放大器工作原理經典電路圖四
請看圖四。因為虛斷,運算放大器同向端沒有電流流過,則流過R1和R2的電流相等,同理流過R4和R3的電流也相等。故 (V1 – V+)/R1 = (V+ - V2)/R2 ……a (Vout – V-)/R3 = V-/R4 ……b 由虛短知: V+ = V- ……c 如果R1=R2,R3=R4,則由以上式子可以推導出 V+ = (V1 + V2)/2 V- = Vout/2 故 Vout = V1 + V2 也是一個加法器,呵呵!
6.運算放大器工作原理經典電路圖五
圖五由虛斷知,通過R1的電流等于通過R2的電流,同理通過R4的電流等于R3的電流,故有 (V2 – V+)/R1 = V+/R2 ……a (V1 – V-)/R4 = (V- - Vout)/R3 ……b 如果R1=R2, 則V+ = V2/2 ……c 如果R3=R4, 則V- = (Vout + V1)/2 ……d 由虛短知 V+ = V- ……e 所以 Vout=V2-V1 這就是傳說中的減法器了。
7.運算放大器工作原理經典電路圖六
圖六電路中,由運算放大器的虛短知,反向輸入端的電壓與同向端相等,由虛斷知,通過R1的電流與通過C1的電流相等。通過R1的電流 i=V1/R1 通過C1的電流i=C*dUc/dt=-C*dVout/dt 所以 Vout=((-1/(R1*C1))∫V1dt 輸出電壓與輸入電壓對時間的積分成正比,這就是傳說中的積分電路了。若V1為恒定電壓U,則上式變換為Vout = -U*t/(R1*C1) t 是時間,則Vout輸出電壓是一條從0至負電源電壓按時間變化的直線。
8.運算放大器工作原理經典電路圖七
圖七中由虛斷知,通過電容C1和電阻R2的電流是相等的,由虛短知,運算放大器同向端與反向端電壓是相等的。則: Vout = -i * R2 = -(R2*C1)dV1/dt 這是一個微分電路。如果V1是一個突然加入的直流電壓,則輸出Vout對應一個方向與V1相反的脈沖。
9.運算放大器工作原理經典電路圖八
圖八。由虛短知 Vx = V1 ……a Vy = V2 ……b 由虛斷知,運算放大器輸入端沒有電流流過,則R1、R2、R3可視為串聯,通過每一個電阻的電流是相同的,電流I=(Vx-Vy)/R2 ……c 則: Vo1-Vo2=I*(R1+R2+R3) = (Vx-Vy)(R1+R2+R3)/R2 ……d 由虛斷知,流過R6與流過R7的電流相等,若R6=R7, 則Vw = Vo2/2 ……e 同理若R4=R5,則Vout – Vu = Vu – Vo1,故Vu = (Vout+Vo1)/2 ……f 由虛短知,Vu = Vw ……g 由efg得 Vout = Vo2 – Vo1 ……h 由dh得 Vout = (Vy –Vx)(R1+R2+R3)/R2 上式中(R1+R2+R3)/R2是定值,此值確定了差值(Vy –Vx)的放大倍數。這個電路就是傳說中的差分放大電路了。
10.運算放大器工作原理經典電路圖九
分析一個大家接觸得較多的電路。很多控制器接受來自各種檢測儀表的0~20mA或4~20mA電流,電路將此電流轉換成電壓后再送ADC轉換成數字信號,圖九就是這樣一個典型電路。如圖4~20mA電流流過采樣100Ω電阻R1,在R1上會產生0.4~2V的電壓差。由虛斷知,運算放大器輸入端沒有電流流過,則流過R3和R5的電流相等,流過R2和R4的電流相等。故: (V2-Vy)/R3 = Vy/R5 ……a (V1-Vx)/R2 = (Vx-Vout)/R4 ……b 由虛短知: Vx = Vy ……c 電流從0~20mA變化,則V1 = V2 + (0.4~2) ……d 由cd式代入b式得(V2 + (0.4~2)-Vy)/R2 = (Vy-Vout)/R4 ……e 如果R3=R2,R4=R5,則由e-a得Vout = -(0.4~2)R4/R2 ……f 圖九中R4/R2=22k/10k=2.2,則f式Vout = -(0.88~4.4)V,即是說,將4~20mA電流轉換成了-0.88 ~ -4.4V電壓,此電壓可以送ADC去處理。
11.運算放大器工作原理經典電路圖十
電流可以轉換成電壓,電壓也可以轉換成電流。圖十就是這樣一個電路。上圖的負反饋沒有通過電阻直接反饋,而是串聯了三極管Q1的發射結,大家可不要以為是一個比較器就是了。只要是放大電路,虛短虛斷的規律仍然是符合的!
由虛斷知,運算放大器輸入端沒有電流流過,
則 (Vi – V1)/R2 = (V1 – V4)/R6 ……a
同理 (V3 – V2)/R5 = V2/R4 ……b
由虛短知 V1 = V2 ……c
如果R2=R6,R4=R5,則由abc式得V3-V4=Vi
上式說明R7兩端的電壓和輸入電壓Vi相等,則通過R7的電流I=Vi/R7,如果負載RL《《100KΩ,則通過Rl和通過R7的電流基本相同。
12.運算放大器工作原理經典電路圖十一
來一個復雜的,呵呵!圖十一是一個三線制PT100前置放大電路。PT100傳感器引出三根材質、線徑、長度完全相同的線,接法如圖所示。有2V的電壓加在由R14、R20、R15、Z1、PT100及其線電阻組成的橋電路上。Z1、Z2、Z3、D11、D12、D83及各電容在電路中起濾波和保護作用,靜態分析時可不予理會,Z1、Z2、Z3可視為短路,D11、D12、D83及各電容可視為開路。由電阻分壓知, V3=2*R20/(R14+20)=200/1100=2/11 ……a 由虛短知,U8B第6、7腳 電壓和第5腳電壓相等 V4=V3 ……b 由虛斷知,U8A第2腳沒有電流流過,則流過R18和R19上的電流相等。 (V2-V4)/R19=(V5-V2)/R18 ……c 由虛斷知,U8A第3腳沒有電流流過, V1=V7 ……d 在橋電路中R15和Z1、PT100及線電阻串聯,PT100與線電阻串聯分得的電壓通過電阻R17加至U8A的第3腳, V7=2*(Rx+2R0)/(R15+Rx+2R0) …。.e 由虛短知,U8A第3腳和第2腳電壓相等, V1=V2 ……f 由abcdef得, (V5-V7)/100=(V7-V3)/2.2 化簡得 V5=(102.2*V7-100V3)/2.2 即 V5=204.4(Rx+2R0)/(1000+Rx+2R0) – 200/11 ……g 上式輸出電壓V5是Rx的函數我們再看線電阻的影響。Pt100最下端線電阻上產生的電壓降經過中間的線電阻、Z2、R22,加至U8C的第10腳,由虛斷知, V5=V8=V9=2*R0/(R15+Rx+2R0) ……a (V6-V10)/R25=V10/R26 ……b 由虛短知, V10=V5 ……c 由式abc得 V6=(102.2/2.2)V5=204.4R0/[2.2(1000+Rx+2R0)] ……h 由式gh組成的方程組知,如果測出V5、V6的值,就可算出Rx及R0,知道Rx,查pt100分度表就知道溫度的大小了。
1200字徹底掌握運算放大器電路的關鍵參數選型計算:共模抑制比 CMRR
運放的共模抑制比 (CMRR) 是一個重要參數,它表示運放抑制共模信號對運放輸出影響的能力。理想的運算放大器應具有無限大的CMRR,也就是說當運放的兩個...
運算放大器電路案例分析:沒有為運放設置正確的輸入偏置電流引發的輸出失調電壓異常
我想大概率是因為在大學學習模擬電路時經常聽到“虛短”,“虛斷”導致的吧,因為“虛斷”是因為理想運放輸入阻抗無窮大,既然都無窮大了,那還考慮啥輸入偏置電流...
集成運放電路,即集成運算放大器電路,是一種內部結構復雜且性能穩定可靠的模擬電路。它主要由以下四個部分組成: 輸入級 : 輸入級是集成運放電路的前置端,其...
OTL(Output Transformerless)電路是一種沒有輸出變壓器的放大器電路,而OCL(Output Capacitorless)電路是一...
因此本文僅以DFC系列之1100型伺服放大器為例,簡要介紹其原理及常見故障的分析與處理,供同行參考。
聲雅SA-93,是前后級全平衡甲類功放。前后級都是全平衡放大電路,對傳輸過程中的各種干擾,能有效抑制。
選用美國Maxim公司的MAX4182。MAX4182為單片、帶寬、含門限的電流反饋放大器。 MAX4182的管腳分布如圖1所示。在圖1中,VOC與VE...
編輯推薦廠商產品技術軟件/工具OS/語言教程專題
電機控制 | DSP | 氮化鎵 | 功率放大器 | ChatGPT | 自動駕駛 | TI | 瑞薩電子 |
BLDC | PLC | 碳化硅 | 二極管 | OpenAI | 元宇宙 | 安森美 | ADI |
無刷電機 | FOC | IGBT | 逆變器 | 文心一言 | 5G | 英飛凌 | 羅姆 |
直流電機 | PID | MOSFET | 傳感器 | 人工智能 | 物聯網 | NXP | 賽靈思 |
步進電機 | SPWM | 充電樁 | IPM | 機器視覺 | 無人機 | 三菱電機 | ST |
伺服電機 | SVPWM | 光伏發電 | UPS | AR | 智能電網 | 國民技術 | Microchip |
開關電源 | 步進電機 | 無線充電 | LabVIEW | EMC | PLC | OLED | 單片機 |
5G | m2m | DSP | MCU | ASIC | CPU | ROM | DRAM |
NB-IoT | LoRa | Zigbee | NFC | 藍牙 | RFID | Wi-Fi | SIGFOX |
Type-C | USB | 以太網 | 仿真器 | RISC | RAM | 寄存器 | GPU |
語音識別 | 萬用表 | CPLD | 耦合 | 電路仿真 | 電容濾波 | 保護電路 | 看門狗 |
CAN | CSI | DSI | DVI | Ethernet | HDMI | I2C | RS-485 |
SDI | nas | DMA | HomeKit | 閾值電壓 | UART | 機器學習 | TensorFlow |
Arduino | BeagleBone | 樹莓派 | STM32 | MSP430 | EFM32 | ARM mbed | EDA |
示波器 | LPC | imx8 | PSoC | Altium Designer | Allegro | Mentor | Pads |
OrCAD | Cadence | AutoCAD | 華秋DFM | Keil | MATLAB | MPLAB | Quartus |
C++ | Java | Python | JavaScript | node.js | RISC-V | verilog | Tensorflow |
Android | iOS | linux | RTOS | FreeRTOS | LiteOS | RT-THread | uCOS |
DuerOS | Brillo | Windows11 | HarmonyOS |