一、電磁波產生的基本原理
按照麥克斯韋電磁場理論,變化的電場在其周圍空間要產生變化的磁場,而變化的磁場又要產生變化的電場。這樣,變化的電場和變化的磁場之間相互依賴,相互激發,交替產生,并以一定速度由近及遠地在空間傳播出去。
周期性變化的磁場激發周期性變化的電場,周期性變化的電場激發周期性變化的磁場。
電磁波不同于機械波,它的傳播不需要依賴任何彈性介質,它只靠“變化電場產生變化磁場,變化磁場產生變化電場”的機理來傳播。
當電磁波頻率較低時,主要籍由有形的導電體才能傳遞;當頻率逐漸提高時,電磁波就會外溢到導體之外,不需要介質也能向外傳遞能量,這就是一種輻射。在低頻的電振蕩中,磁電之間的相互變化比較緩慢,其能量幾乎全部反回原電路而沒有能量輻射出去。然而,在高頻率的電振蕩中,磁電互變甚快,能量不可能反回原振蕩電路,于是電能、磁能隨著電場與磁場的周期變化以電磁波的形式向空間傳播出去。
根據以上的理論,每一段流過高頻電流的導線都會有電磁輻射。有的導線用作傳輸,就不希望有太多的電磁輻射損耗能量;有的導線用作天線,就希望能盡可能地將能量轉化為電磁波發射出去。于是就有了傳輸線和天線。無論是天線還是傳輸線,都是電磁波理論或麥克斯韋方程在不同情況下的應用。
對于傳輸線,這種導線的結構應該能傳遞電磁能量,而不會向外輻射;對于天線,這種導線的結構應該能盡可能將電磁能量傳遞出去。不同形狀、尺寸的導線在發射和接收某一頻率的無線電信號時,效率相差很多,因此要取得理想的通信效果,必須采用適當的天線才行!
研究什么樣結構的導線能夠實現高效的發射和接收,也就形成了天線這門學問。
高頻電磁波在空中傳播,如遇著導體,就會發生感應作用,在導體內產生高頻電流,使我們可以用導線接收來自遠處的無線電信號。
二、天線
在無線通信系統中,需要將來自發射機的導波能量轉變為無線電波,或者將無線電波轉換為導波能量,用來輻射和接收無線電波的裝置稱為天線。發射機所產生的已調制的高頻電流能量(或導波能量)經饋線傳輸到發射天線,通過天線將轉換為某種極化的電磁波能量,并向所需方向出去。到達接收點后,接收天線將來自空間特定方向的某種極化的電磁波能量又轉換為已調制的高頻電流能量,經饋線輸送到接收機輸入端。
綜上所述,天線應有以下功能:
1. 天線應能將導波能量盡可能多地轉變為電磁波能量。這首先要求天線是一個良好的電磁開放系統,其次要求天線與發射機或接收機匹配。
2、 天線應使電磁波盡可能集中于確定的方向上,或對確定方向的來波最大限度的接受,即方向具有方向性。
3、 天線應能發射或接收規定極化的電磁波,即天線有適當的極化。
4、 天線應有足夠的工作頻帶。
這四點是天線最基本的功能,據此可定義若干參數作為設計和評價天線的依據。
把天線和發射機或接收機連接起來的系統稱為饋線系統。饋線的形式隨頻率的不同而分為又導線傳輸線、同軸線傳輸線、波導或微帶線等。所以,所謂饋線,實際上就是傳輸線。
天線的電參數
天線的基本功能就是能量轉換和定向輻射,所謂天線的電參數,就是能定量表征其能量轉換和定向輻射能力的量。
1.天線的方向性
衡量天線將能量向所需方向輻射的能力。
主瓣寬度:
主瓣寬度是衡量天線的最大輻射區域的程度的物理量。越寬越好。
旁瓣電平:
旁瓣電平是指離主瓣最近且電平最高的第一旁瓣的電平。實際上,旁瓣區是不需要輻射的區域,所以其電平越低越好。
(天線輻射的主瓣旁瓣類似方波信號的頻譜圖)
前后比:
前后比指最大輻射方向(前向)電平與其相反方向(后向)電平之比。前后比越大,天線的后向輻射(或接收)越小。前后比F / B 的計算十分簡單--- F / B = 10 Lg {(前向功率密度) /( 后向功率密度)}
方向系數:
在離天線某一距離處,天線在最大輻射方向上的輻射功率流密度與相同輻射功率的理想無方向性天線在同一距離處的輻射功率流密度之比。這是方向性中最重要的指標,能精確比較不同天線的方向性,表示了天線集束能量的電參數。
2.天線效率
天線效率定義為天線輻射功率與輸入功率之比。
常用天線的輻射電阻R來試題天線輻射功率的能力。天線的輻射電阻是一個虛擬的量,定義如下:設有一電阻R,當通過它的電流等于天線上的最大電流時,其損耗的功率就等于其輻射功率。顯然,輻射電阻的高低是衡量天線輻射能力的一個重要指標,即輻射電阻越大,說明天線的輻射能力越強。
3.增益系數
增益系數是綜合衡量天線能量轉換和方向特性的參數,它的定義為:方向系數與天線效率的乘積,記為:
D為方向系數, 為天線效率。
可見,天線方向系數和越高,則增益系數也就越高。
物理意義:天線的增益系數描述了天線與理想的無方向性天線相比在最大輻射方向上將輸出功率放大的倍數。也可以這樣通俗地理解,為定向天線與理想全向天線(其輻射在各方向均等)在一定的距離上的某點處產生一定大小的信號之比。
例:如果用理想的無方向性點源作為發射天線,需要100W的輸入功率,而用增益為 G = 13 dB = 20的某定向天線作為發射天線時,輸入功率只需 100 / 20 = 5W 。 換言之,某天線的增益,就其最大輻射方向上的輻射效果來說,與無方向性的理想點源相比,把輸入功率放大的倍數。
4.極化方向
極化特性是指天線在最大輻射方向上電場矢量的方向隨時間變化的規律。
極化方向,就是天線電場的方向。天線的極化方式有線極化方式有線極化(水平極化和垂直極化)和圓極化(左旋極化和右旋極化)等方式。
如何理解線極化?首先想象那幅經典的電磁波傳播圖,電場在一個平面以正弦波傳播,磁場在電場的正交平面也以正弦波傳播,我們從起點沿著傳播方向去看電場,看到的就是一段短線,這種極化就是線極化。那么線極化的方向如何確定呢?當高頻電流通過天線時,會在天線上產生高頻電壓,形成高頻電場,這個電場方向一般與天線的走向一致,即線極化的極化方向是與天線的走向一致的。如果天線是水平方向架設的導線,產生的電場也是水平方向的,叫它“水平極化”天線;如果天線是垂直于地面架設的導線,產生的電場也是垂直方向的,叫它“垂直極化”天線。(通常直線導線結構的天線為線極化)
如何理解圓極化呢?同樣是那幅經典的電磁波傳播圖,不過此時的電場大小始終不變,但是方向圍繞著x軸不變旋轉變化,但在任何一個平面上的投影都是一個正弦波,有點類似我們對信號的處理中輻度不變,但相位在不斷變化。此時,從原點向傳播方向去看電場,看到的就是一個圓,這種極化就是圓極化。當然,向左旋轉就是左旋極化,向右旋轉就是右旋極化。(通常螺旋結構的天線為圓極化)
只有收信天線的極化方向與所接收電磁波的極化方向一致才能感應出最大的信號來。根據這一原理,我們可以推斷出以下結論。
對于線極化,當收信天線的極化方向與線極化方向一致(電場方向)時,感應出的信號最大(電磁波在極化方向上投影最大);隨著收信天線的極化方向與線極化方向偏離越來越多時,感應出的信號越小(投影不斷減小);當收信天線的極化方向與線極化方向正交(磁場方向)時,感應出的信號為零(投影為零)。線極化方式對天線的方向要求較高。當然在實際條件下,電磁波傳播途中遇到反射折射,會引起極化方向偏轉,有時一個信號既可以被水平天線接收,也可以被垂直天線接收,但無論如何,天線的極化方向常常是需要考慮的重要問題。
對于圓極化,無論收信天線的極化方向如何,感應出的信號都是相同的,不會有什么差別(電磁波在任何方向上的投影都是一樣的)。所以,采用圓極化方式,使得系統對天線的方位(這里的方位是天線的方位,和前面所提到的方向系統的方位是不同的)敏感性降低。因而,大多數場合都采用了圓極化方式。
打個形象的比喻,線極化類似彎曲在地面上爬行的蛇,圓極化類似蛇繞在木棍上繞行。再打個比喻,你拿一根繩子,上下擺,繩子傳遞的波就是線極化形式的;不斷地畫圓,傳遞的波就是圓極化的。
5.頻帶寬度
天線的電參數都與頻率有關,也就是說,上述電參數都是針對某一工作頻率設計的,當工作頻率偏離設計頻率時,往往要引起天線參數的變化。當工作頻率變化時,天線的有關電參數不應超出規定的范圍,這一頻率范圍稱為頻帶寬度,簡稱為天線的帶寬。
6.輸入阻抗
對于發信機來說,天線是一個負載,如何使天線能最多地攝取能量,就要解決一個匹配總是。只有當天線本身的阻抗與發信機的阻抗相等是,才能得到最大的發射功率!
對于高頻信號講,天線是很長的導線。高頻信號從饋點流向天線端點以及從端點反射回來所用的時間,足以引起天線各部分電壓、電流的幅度和相位產生很大的差別,致使天線的長度、結構以及饋電點的位置不同,呈現的阻抗也不同。如中心饋電的偶極振子,當每臂長度為四分一波長時,呈現約50至75歐的純電阻,容易做到與饋電電纜及發信機直接匹配。
當條件限制,無法將天線的長度修整到適當數值時,一般應在天線電路中附加電感電容等電抗元件抵消天線本身呈現的電抗,有時還需要加阻抗變壓器將天線阻抗變換到發信電路的要求值,這些附加元件構成的設備叫“天線調諧器”或“天線匹配器”。
7.有效長度
有效長度是衡量天線輻射能力的又一個重要指標。
天線的有效長度定義如下:在保持實際天線最大輻射方向上的場強值不變的條件下,假設天線上電流分布為均勻分布時天線的等效長度。有效長度越長,表明天線的輻射能力越強。
書上有一個例子加強感性認識:長度為2h、電流不均勻分布的短振子在最大輻射方向上的場強與長度為h、電流為均勻分布的振子在最大輻射方向上的場強相等。也就是說,該短振子的有效長度為h。
接收天線理論
高頻電磁波在空中傳播,如遇著導體,就會發生感應作用,在導體內產生高頻電流,使我們可以用導線接收來自遠處的無線電信號。接收電磁波所用的導線,一般叫做“接收天線”。
1、有效接收面積
有效接收面積是衡量一個天線接收無線電波能力的重要指標。它的定義為:當天線以最大接收方向對準來波方向進行接收時,接收天線傳送到匹配負載的平均功率為PLmax,并假定此功率是由一塊與來波方向相垂直的面積所截獲,則這個面積就稱為接收天線的有效接收面積。
有效接收面積越大,天線接收無線電波的能力也就越強。
2、等效噪聲溫度
接收天線的等效噪聲溫度是反映天線接收微弱信號性能的重要電參數。
接收天線把從周圍空間接收到的噪聲功率送到接收機的過程類似于噪聲電阻把噪聲功率輸送給與其相連的電阻網絡。因此接收天線等效為一個溫度為Ta的電阻。Ta越高,天線送至接收機的噪聲越大,反之越小。
三、傳輸線
傳輸線是用以傳輸微波信息和能量的各種形式的傳輸系統的總稱,它的作用是引導電磁波沿一定方向傳輸,因此又稱為導波系統。其所引導的電磁波被稱為導行波。
傳輸線也是一種導體,但是與天線不同,不希望電磁波在這里傳播時有輻射。所以,用金屬做成的傳輸線的結構,是盡量不輻射能量。
以最常的同軸線纜為例,中間一根導線,外面還有一圈環形導線,電磁波就在這樣一個空間中傳播,而不會輻射出去。
責任編輯:ct
評論
查看更多