精品国产人成在线_亚洲高清无码在线观看_国产在线视频国产永久2021_国产AV综合第一页一个的一区免费影院黑人_最近中文字幕MV高清在线视频

電子發(fā)燒友App

硬聲App

0
  • 聊天消息
  • 系統(tǒng)消息
  • 評論與回復(fù)
登錄后你可以
  • 下載海量資料
  • 學(xué)習(xí)在線課程
  • 觀看技術(shù)視頻
  • 寫文章/發(fā)帖/加入社區(qū)
創(chuàng)作中心

完善資料讓更多小伙伴認(rèn)識你,還能領(lǐng)取20積分哦,立即完善>

3天內(nèi)不再提示

電子發(fā)燒友網(wǎng)>光電顯示>淺談光學(xué)成像系統(tǒng)的成像體制

淺談光學(xué)成像系統(tǒng)的成像體制

收藏

聲明:本文內(nèi)容及配圖由入駐作者撰寫或者入駐合作網(wǎng)站授權(quán)轉(zhuǎn)載。文章觀點(diǎn)僅代表作者本人,不代表電子發(fā)燒友網(wǎng)立場。文章及其配圖僅供工程師學(xué)習(xí)之用,如有內(nèi)容侵權(quán)或者其他違規(guī)問題,請聯(lián)系本站處理。 舉報投訴

評論

查看更多

相關(guān)推薦

學(xué)成像技術(shù)在局部放電監(jiān)測中的應(yīng)用

借助FLIR Si124之類的聲學(xué)成像儀,公用部門可以分析局部放電模式,利用自動漏電成本估算和放電類型分類工具,優(yōu)先安排維修工作,安全快速地進(jìn)行非接觸式檢查。
2021-03-31 14:20:572575

基于ZEMAX設(shè)計的寬光譜可見-短波紅外成像光學(xué)系統(tǒng)

光學(xué)系統(tǒng)結(jié)構(gòu)的選擇與該系統(tǒng)的應(yīng)用場景密切相關(guān),在機(jī)器視覺領(lǐng)域中,短波紅外波段的成像系統(tǒng)往往具有大視場、小畸變和成像質(zhì)量穩(wěn)定的特點(diǎn)。合理地選擇光學(xué)系統(tǒng)結(jié)構(gòu)能夠降低設(shè)計的復(fù)雜度。
2023-05-08 17:47:451045

360度全息幻影成像

360度全息幻影成像系統(tǒng)是利用光學(xué)原理,將3D影像懸浮在柜體實(shí)景裝置中的成像系統(tǒng)。也被稱之為三維全息影像、全息三維成像,觀眾的視線能從四面中任何一面穿透它,通過折射和反射,觀眾能從錐形空間里看到自由
2013-09-11 17:12:56

成像探測儀

有朋友研究成像探測儀嗎(地下探寶)
2016-10-26 22:49:53

AutoVision成像解決方案怎么助力輔助駕駛系統(tǒng)應(yīng)用?

高級數(shù)字成像解決方案供應(yīng)商OmniVision發(fā)布的最新 AutoVision 成像解決方案可滿足汽車業(yè)對輔助駕駛系統(tǒng)應(yīng)用(如倒車攝像頭和后視鏡死角監(jiān)視系統(tǒng))更高成像效果的要求。1/4 英寸的超小巧 OV7960 和 OV7962 型號可提供優(yōu)異的低光性能 (
2019-08-16 06:37:42

EIP在磁共振成像系統(tǒng)中的應(yīng)用

EIP在磁共振成像系統(tǒng)中的應(yīng)用 原理:核磁共振(Nuclear Magnetic Resonance)作為一種物理現(xiàn)象,用于物理學(xué)、化學(xué)、生物學(xué)核醫(yī)學(xué)領(lǐng)域已有30多年的歷史
2009-11-30 11:28:51

【AD新聞】中國深圳先進(jìn)院在高分辨率超聲成像領(lǐng)域取得重要進(jìn)展

日前,中國科學(xué)院深圳先進(jìn)技術(shù)研究院鄭海榮研究員領(lǐng)銜的勞特伯醫(yī)學(xué)成像研究中心在高分辨率超聲成像方向取得新進(jìn)展,勞特伯醫(yī)學(xué)成像研究中心邱維寶博士課題組(以下簡稱課題組)在高頻超聲換能器、超聲電子系統(tǒng)
2018-03-23 14:59:13

不同醫(yī)學(xué)成像方法電子設(shè)計的挑戰(zhàn)

的一些新進(jìn)展,讓成像系統(tǒng)實(shí)現(xiàn)了史無前例的電子封裝密度,從而帶來醫(yī)學(xué)成像的巨大發(fā)展。同時,嵌入式處理器極大地提高了醫(yī)療圖像處理和實(shí)時圖像顯示的能力,從而實(shí)現(xiàn)了更迅速、更準(zhǔn)確的診斷。這些技術(shù)的融合以及許多新興
2019-05-16 10:44:47

不同醫(yī)學(xué)數(shù)字成像設(shè)的挑戰(zhàn)

70 年代早期醫(yī)學(xué)成像數(shù)字技術(shù)出現(xiàn)以來,數(shù)字成像的重要性得以日益彰顯。半導(dǎo)體器件中混合信號設(shè)計能力方面的一些新進(jìn)展,讓成像系統(tǒng)實(shí)現(xiàn)了史無前例的電子封裝密度,從而帶來醫(yī)學(xué)成像的巨大發(fā)展。同時,嵌入式處理器
2019-07-10 06:11:12

關(guān)于毛玻璃后的成像系統(tǒng)設(shè)計

請問一下大佬們,關(guān)于毛玻璃后的成像系統(tǒng)設(shè)計應(yīng)該是按照什么步驟來進(jìn)行的,利用CMOS如何檢測毛玻璃后的物體的成像情況。才接觸到這方面,能給一下思路嗎,非常感謝QAQ
2017-11-24 17:42:18

醫(yī)學(xué)成像中的時鐘分發(fā)系統(tǒng)設(shè)計簡介

信號在系統(tǒng)內(nèi)的傳輸。本文中,我們將討論大型成像設(shè)備的時鐘分發(fā)系統(tǒng),而這對設(shè)計工程師們而言是一大挑戰(zhàn)。  1970年代中后期,計算機(jī)X射線軸向分層造影(CAT)掃描就已經(jīng)出現(xiàn)在醫(yī)學(xué)界了。計算機(jī)處理能力
2012-11-27 17:28:43

醫(yī)學(xué)數(shù)字成像

設(shè)計能力方面的一些新進(jìn)展,讓成像系統(tǒng)實(shí)現(xiàn)了史無前例的電子封裝密度,從而帶來醫(yī)學(xué)成像的巨大發(fā)展。同時,嵌入式處理器極大地提高了醫(yī)療圖像處理和實(shí)時圖像顯示的能力,從而實(shí)現(xiàn)了更迅速、更準(zhǔn)確的診斷。這些技術(shù)的融合
2010-12-21 10:13:44

基于矢量成像技術(shù)對PCB上元件的檢測

適應(yīng)線路板上的每一個元件,而不管其形狀、大小和方向。當(dāng)把元件模型從一臺視像檢查設(shè)備轉(zhuǎn)移到另一臺光學(xué)系統(tǒng)不同的設(shè)備上時,所得到的圖像大小會發(fā)生改變,但此時系統(tǒng)能自動對變化進(jìn)行處理。  此外,矢量成像技術(shù)
2018-09-17 17:13:11

夜視技術(shù)中的微光成像和紅外熱成像技術(shù)有什么不同?

夜視技術(shù)中的微光成像和紅外熱成像技術(shù)有什么不同?
2021-06-03 07:08:26

如何去設(shè)計成像制導(dǎo)仿真圖像生成仿真系統(tǒng)

成像制導(dǎo)仿真系統(tǒng)是由哪些部分組成的?一種基于DSP處理器的成像制導(dǎo)圖像生成仿真系統(tǒng)設(shè)計
2021-06-04 06:30:24

常見的現(xiàn)代醫(yī)療成像系統(tǒng)有哪幾種?

主要的現(xiàn)代醫(yī)療成像系統(tǒng)實(shí)現(xiàn)最佳工作性能的高級數(shù)據(jù)轉(zhuǎn)換器和集成解決方案
2021-03-10 06:18:12

微光工業(yè)成像應(yīng)用的新技術(shù)

器件的成像細(xì)節(jié)。采用4 / 3光學(xué)格式(22.2毫米對角線)和1:1的縱橫比,該新的傳感器直接匹配專業(yè)顯微鏡的成像路徑,使它適用于科學(xué)成像應(yīng)用如高分辨率顯微鏡,以及安防和監(jiān)控等應(yīng)用。在這些微光應(yīng)用中推動
2018-10-22 09:01:08

怎么設(shè)計基于FPGA多波束成像的聲納系統(tǒng)

多波束成像聲納利用了數(shù)字成像技術(shù),在海底探測范圍內(nèi)形成距離一方位二維聲圖像,具有很高的系統(tǒng)穩(wěn)定性和很強(qiáng)的信號處理能力。但是由于數(shù)字成像系統(tǒng)數(shù)據(jù)運(yùn)算量大、需要實(shí)時成像等特點(diǎn),對處理器性能要求很高。隨著
2019-10-09 06:04:36

無人機(jī)紅外雙光熱成像吊艙的應(yīng)用

120倍測溫型紅外雙光熱成像云臺相機(jī)吊艙120倍變焦230萬像素可見光機(jī)芯,30倍光學(xué)變焦,4倍數(shù)碼變焦,熱成像640*480分辨率、50Hz、25mm鏡頭非制冷熱成像機(jī)芯。具備目標(biāo)跟隨功能,紅外雙
2020-09-09 19:55:52

測試測量與醫(yī)學(xué)成像領(lǐng)域的模擬技術(shù)未來將如何發(fā)展?

本文將給出測試測量與醫(yī)學(xué)成像應(yīng)用領(lǐng)域的實(shí)例,并討論未來的發(fā)展趨勢。
2021-05-13 06:34:04

現(xiàn)代醫(yī)療成像系統(tǒng)在不同成像模式環(huán)境中有什么挑戰(zhàn)?

在醫(yī)療成像領(lǐng)域的電子設(shè)計中,數(shù)據(jù)轉(zhuǎn)換器的動態(tài)范圍、分辨率、精度、線性度和噪聲要求帶來了最嚴(yán)苛的挑戰(zhàn)。
2019-07-30 06:11:51

紅外成像儀探頭組成

紅外熱成像儀的探頭有哪些傳感器或光學(xué)元件組成?
2018-11-19 18:56:12

紅外熱成像的原理是什么? 紅外熱成像技術(shù)有什么作用?

紅外熱成像的原理是什么?紅外熱成像技術(shù)有什么作用?
2021-06-26 07:26:34

紅外熱成像組件測試分析系統(tǒng)

紅外熱成像組件測試分析系統(tǒng)
2012-08-03 23:35:22

紅外穿墻成像

一般的紅外只能在沒有障礙物的情況下成像,有沒有可以穿障礙物的紅外成像技術(shù),我們想用在消防救援上面。
2020-08-11 11:18:09

解析不同醫(yī)學(xué)數(shù)字成像方法電子設(shè)計

的一些新進(jìn)展,讓成像系統(tǒng)實(shí)現(xiàn)了史無前例的電子封裝密度,從而帶來醫(yī)學(xué)成像的巨大發(fā)展。同時,嵌入式處理器極大地提高了醫(yī)療圖像處理和實(shí)時圖像顯示的能力,從而實(shí)現(xiàn)了更迅速、更準(zhǔn)確的診斷。這些技術(shù)的融合以及許多
2012-12-06 15:55:10

基于windows仿真光學(xué)遙感微秒實(shí)時通信

介紹并實(shí)現(xiàn)了基于windows 仿真光學(xué)成像遙感器微秒精度實(shí)時通信的方法。描述了衛(wèi)星有效載荷控制系統(tǒng)光學(xué)成像遙感器實(shí)時通信的原理,以及在windows 環(huán)境下獲取高精度時間的方
2009-09-24 10:56:346

基于windows仿真光學(xué)遙感微秒實(shí)時通信

介紹并實(shí)現(xiàn)了基于windows 仿真光學(xué)成像遙感器微秒精度實(shí)時通信的方法。描述了衛(wèi)星有效載荷控制系統(tǒng)光學(xué)成像遙感器實(shí)時通信的原理,以及在windows 環(huán)境下獲取高精度時間的方
2009-12-12 15:32:4112

光學(xué)神經(jīng)成像研究發(fā)展趨勢

光學(xué)神經(jīng)成像研究發(fā)展趨勢 大腦功能的成像檢測在認(rèn)知神經(jīng)科學(xué)領(lǐng)域具有重要意義。 現(xiàn)代光子學(xué)技術(shù)的發(fā)展為認(rèn)知腦成像提供了新的研究手段"可在神經(jīng)系統(tǒng)
2010-02-26 17:06:4730

共聚焦顯微鏡3D光學(xué)成像系統(tǒng)

中圖儀器VT6000系列共聚焦顯微鏡3D光學(xué)成像系統(tǒng)在測量漸變較大的高度時,跟其他方法相比,可以更精確量測物體高度,建立3D立體影像。它以共聚焦技術(shù)為原理,結(jié)合精密Z向掃描模塊、3D 建模算法等
2023-09-27 11:40:02

紅外成像系統(tǒng)光學(xué)設(shè)計

 推導(dǎo)了以反射式兩鏡系統(tǒng)為主體的紅外成像系統(tǒng)中滿足光瞳匹配要求的轉(zhuǎn)像透鏡的高斯光學(xué)參量與兩鏡系統(tǒng)參量的關(guān)系式。當(dāng)選定紅外焦平面的冷屏直徑及到焦面的距離后,轉(zhuǎn)
2011-01-04 17:36:350

飛利浦開展新型醫(yī)學(xué)成像技術(shù)PET/MR研究

飛利浦開展新型醫(yī)學(xué)成像技術(shù)PET/MR研究 飛利浦醫(yī)療保健領(lǐng)導(dǎo)的Union-funded HYPERImage成像項(xiàng)目已經(jīng)實(shí)現(xiàn)了里程碑式進(jìn)展,該項(xiàng)目創(chuàng)建一個新的醫(yī)學(xué)成像技術(shù),即混合型 PET/MR
2009-12-05 17:19:581051

切倫科夫冷光成像的新型光學(xué)成像技術(shù)分析

美國核醫(yī)學(xué)學(xué)會7月1日表示,新出版的《核醫(yī)學(xué)雜志》報道了名為切倫科夫冷光成像(Cerenkov luminescence imaging)的新型光學(xué)成像技術(shù)。據(jù)文章作者介紹,新技術(shù)有望幫助人們診治癌癥
2010-07-12 08:38:35710

不同醫(yī)學(xué)成像方法電子設(shè)計存在的挑戰(zhàn)

自20世紀(jì)70年代早期醫(yī)學(xué)成像數(shù)字技術(shù)出現(xiàn)以來,數(shù)字成像的重要性得以日益彰顯。半導(dǎo)體器件中混合信號設(shè)計能力方面的一些新進(jìn)展,讓成像系統(tǒng)實(shí)現(xiàn)了史無前例的電子封裝密度,
2010-08-06 10:09:24443

醫(yī)學(xué)成像:兩高一低新風(fēng)尚

電子發(fā)燒友網(wǎng)核心提示 :與所有非常依賴科技進(jìn)步的行業(yè)一樣,醫(yī)學(xué)成像設(shè)備廠商不得不持續(xù)改進(jìn)他們的產(chǎn)品主要是改進(jìn)系統(tǒng)成像質(zhì)量。無論是超聲波反射聲波、核磁共振成像(MR
2012-10-18 09:45:221496

核醫(yī)學(xué)成像設(shè)備基礎(chǔ)知識詳解

核醫(yī)學(xué)成像設(shè)備是指探測并顯示放射性核素藥物體內(nèi)分布圖像的設(shè)備。本文介紹核醫(yī)學(xué)成像設(shè)備分類及特點(diǎn)、核醫(yī)學(xué)成像的過程和基本條件以及 核醫(yī)學(xué)成像的基本特點(diǎn)。
2012-11-14 16:31:219321

醫(yī)學(xué)成像技術(shù)“看病”?智能手機(jī)聽診?

隨著科學(xué)技術(shù)的現(xiàn)代化與數(shù)字化發(fā)展,醫(yī)學(xué)成像技術(shù)能輔助醫(yī)生“看病”,智能手機(jī)也能幫助醫(yī)生聽診。
2013-01-15 10:19:311112

超分辨定位顯微光學(xué)成像技術(shù)詳述

超分辨定位顯微成像是本世紀(jì)光學(xué)顯微成像領(lǐng)域最重要的突破,實(shí)現(xiàn)了20 nm的超高空間分辨率,為科學(xué)研究的諸多領(lǐng)域,尤其是生物體內(nèi)微小精細(xì)結(jié)構(gòu)的結(jié)構(gòu)與功能研究,提供了前所未有的工具。但是,從該技術(shù)
2017-10-25 11:17:3315

光學(xué)成像與激光散斑成像技術(shù)的介紹

光學(xué)成像能獲取組織和細(xì)胞的結(jié)構(gòu)和功能信息,在生命科學(xué)的基礎(chǔ)研究與應(yīng)用研究中表現(xiàn)出巨大潛力。但在活體研究時,組織的高散射限制了光在組織中的穿透深度,從而影響了成像的分辨率和對比度。利用外科手術(shù)建立起來
2017-10-26 10:18:4812

基于等離子激元增強(qiáng)拉曼散射的單分子化學(xué)成像技術(shù)

本文詳細(xì)介紹了基于等離激元增強(qiáng)拉曼散射的單分子化學(xué)成像技術(shù)。
2017-10-27 14:37:1216

最創(chuàng)新的近紅外二區(qū)熒光/生物發(fā)光雙模式光學(xué)成像技術(shù)

在眾多影像技術(shù)中,活體光學(xué)成像技術(shù)具有成像速度快、靈敏度高、可以進(jìn)行多通道成像以及經(jīng)濟(jì)快捷等特點(diǎn),已被廣泛應(yīng)用于干細(xì)胞示蹤研究。
2018-03-15 15:50:257793

光學(xué)相干斷層成像術(shù)(OCT)系統(tǒng)在醫(yī)學(xué)應(yīng)用

觀看Ryan Brown和Changho Chong博士談?wù)撌澜缟献钚〉?b class="flag-6" style="color: red">光學(xué)相干斷層成像術(shù)(OCT)系統(tǒng),它可以用來掃描你的皮膚,并快速準(zhǔn)確的得到血管內(nèi)成像。 他運(yùn)用NI FlexRIO技術(shù)實(shí)現(xiàn)從原型到部署的環(huán)節(jié)。
2018-06-25 02:51:003721

醫(yī)學(xué)成像配準(zhǔn)的詳細(xì)資料說明

本文檔詳細(xì)介紹的是醫(yī)學(xué)成像配準(zhǔn)的詳細(xì)資料說明主要內(nèi)容包括了:1.介紹,2.配準(zhǔn)方法,3.配準(zhǔn)框架,4.模塊綜述,5.基于大腦的PET和MR圖像快速和魯棒配準(zhǔn)
2019-03-06 08:00:0015

編碼光片陣列顯微術(shù)提高3D成像速度

國外研究團(tuán)隊(duì)開發(fā)了一種新的光學(xué)成像技術(shù)——編碼光片陣列顯微術(shù)(CLAM),它可以高速進(jìn)行3D成像,并且具有足夠的功率效率和柔和度,能夠在掃描過程中以現(xiàn)有技術(shù)無法達(dá)到的水平保存活體標(biāo)本。
2020-05-04 17:22:001914

光學(xué)成像系統(tǒng)的原理

理想光學(xué)系統(tǒng)就是能對任意寬空間內(nèi)的點(diǎn),以任意寬的光束成完善像的光學(xué)系統(tǒng),這種系統(tǒng)具有"點(diǎn)對應(yīng)點(diǎn)、直線對應(yīng)直線、平面對應(yīng)平面"的一一對應(yīng)關(guān)系。物和像的這種關(guān)系稱為共軛。
2020-08-11 10:05:3713475

蘋果提出利用短波紅外光學(xué)成像來進(jìn)行指紋識別

蘋果的專利和當(dāng)下流行的屏下指紋識別不同,它的方法是:光學(xué)成像系統(tǒng)會向上發(fā)射短波紅外光,短波紅外光會與手指相互作用,并根據(jù)與屏幕接觸的脊線的存在反射光線。然后,反射的紅外光會被同一個光學(xué)成像系統(tǒng)中的光敏元件接收,它可以呈現(xiàn)出指紋的一部分進(jìn)行分析。
2020-11-04 14:32:162645

一文淺談太赫茲二維成像系統(tǒng)及其成像的方法

THz(太赫茲)成像是THz技術(shù)的重要應(yīng)用方向之一,1995年,B.B.Hu和M.C.Nuss利用THz時域光譜系統(tǒng)實(shí)現(xiàn)了對新鮮樹葉和集成電路的掃描成像,該工作被視為THz成像領(lǐng)域的里程碑,直觀而清晰的透射掃描圖像證明了THz波在成像領(lǐng)域的巨大潛力。
2020-12-25 14:02:27384

關(guān)于3D視覺成像技術(shù)方案的簡述

3D視覺成像是工業(yè)機(jī)器人信息感知的一種最重要的方法,可分為光學(xué)和非光學(xué)成像方法。
2021-03-12 10:48:536197

基于全新的單光子成像雷達(dá)系統(tǒng),實(shí)現(xiàn)了百公里單光子三維成像

近期發(fā)表于國際知名學(xué)術(shù)期刊《光學(xué)》。 看得更遠(yuǎn)、更清,是人類的不懈追求。單光子成像雷達(dá)作為一種具有單光子級探測靈敏度和皮秒級時間分辨率的新興激光雷達(dá)成像技術(shù),是實(shí)現(xiàn)遠(yuǎn)距離光學(xué)成像的理想方案。然而,如何實(shí)現(xiàn)遠(yuǎn)距離單
2021-03-25 14:44:002603

光學(xué)成像系統(tǒng)之景深概念與原理及計算說明

攝影機(jī)鏡頭或其他成像器前沿能夠取得清晰圖像的成像所測定的被攝物體前后距離范圍。通俗講即被拍攝物體對焦點(diǎn)平面處的景物,在膠片上會形成清晰影像,在對焦點(diǎn)平面的前方某處到其后方某處有一個范圍,其內(nèi)的景物都能形成清晰影像,這一范圍稱為景深,討論景深,一般我們用“深淺”形容,即淺景深或大景深。
2021-04-14 14:27:3911483

剖析聲學(xué)成像儀在高壓局部放電中的應(yīng)用原理

學(xué)成像儀:智能除噪,結(jié)果準(zhǔn)確 電氣承包商選擇檢測局部放電的工具本身,也可能會導(dǎo)致人們對局部放電的識別效果產(chǎn)生誤解。比如,局部放電以40 kHz的頻率恒定地發(fā)出超聲波,許多聲學(xué)成像設(shè)備就只有這個頻率
2021-05-19 10:00:422856

基于深度學(xué)習(xí)的光學(xué)成像算法綜述

光聲成像( otoacoustic Imaging,PA)是一種多物理場耦合的無創(chuàng)生物醫(yī)學(xué)功能成像技術(shù),它將純光學(xué)成像的高對比度與超聲成像的高空間分辨率相結(jié)合,可同時獲得生物組織的結(jié)構(gòu)和功能
2021-06-16 14:58:2210

基于壓電陶瓷光纖相位調(diào)制器的自適應(yīng)光學(xué)綜合孔徑成像遙感器系統(tǒng)

近年來,光學(xué)綜合孔徑成像技術(shù)發(fā)展迅速,它是用多個小孔徑系統(tǒng)通過光學(xué)手段合成大孔徑系統(tǒng)來實(shí)現(xiàn)高分辨率的成像技術(shù)。光學(xué)綜合孔徑成像技術(shù)使得整套成像系統(tǒng)趨于小型化、輕量化,因此,它也是地基和天基大型望遠(yuǎn)鏡系統(tǒng)發(fā)展的重要方向。
2021-07-12 10:06:21756

光學(xué)氣體成像熱像儀的原理

眾所周知,F(xiàn)LIR氣體檢測熱像儀可以幫助您快速、安全地“看到”數(shù)百種不可見氣體,但并非所有類型的氣體都可以通過光學(xué)氣體成像 (OGI) 進(jìn)行可視化。詳細(xì)了解使用OGI熱像儀可以看到哪些類型的氣體
2021-09-24 10:11:263929

淺談高光譜成像光譜儀

成像光譜儀的設(shè)計如其名字,既要“成像”,也要“光譜”,是一種很有特點(diǎn)的光學(xué)系統(tǒng)。 最早的成像光譜儀誕生在美國。1982年,美國航空航天局研制出世界上第一臺方案實(shí)驗(yàn)性成像光譜儀(AIS),并在飛行試驗(yàn)
2021-11-16 10:44:581553

光學(xué)超分辨技術(shù)綜述

為達(dá)到以上要求,人們應(yīng)用了光學(xué)、微電子、計算機(jī)、機(jī)械制造、信號處理等各個學(xué)科的最新成果,來制造先進(jìn)的現(xiàn)代成像系統(tǒng)。在這些現(xiàn)代成像系統(tǒng)中,又以現(xiàn)代光學(xué)成像系統(tǒng),應(yīng)用最為廣泛。
2022-04-13 14:30:202352

Teledyne FLIR成為紅外熱成像領(lǐng)域的佼佼者

Teledyne FLIR提供多樣化的產(chǎn)品組合,服務(wù)于各行各業(yè)的檢測工作。無論是搭載熱成像技術(shù),還是光學(xué)成像技術(shù),亦或是聲學(xué)成像技術(shù),F(xiàn)LIR的產(chǎn)品都為您的檢查工作提供獨(dú)特且精準(zhǔn)的視角。
2022-05-30 17:34:541737

光學(xué)成像系統(tǒng)的功能及其特性參數(shù)

由表可知,1/2in(12.7mm)的鏡頭應(yīng)配1/2in感光面的攝像機(jī),當(dāng)鏡頭的成像尺寸比攝像機(jī)感光面的尺寸大時,不會影響成像,但實(shí)際成像的視場角要比該鏡頭的標(biāo)稱視場角小,如圖1(a)所示;
2022-06-21 11:01:574300

幾種典型的大視場光學(xué)顯微成像技術(shù)及生物醫(yī)學(xué)應(yīng)用

光學(xué)成像系統(tǒng)的信息通量常用空間帶寬積(Space-Bandwidth Product,SBP)來衡量,SBP是一個無量綱數(shù),可以理解為系統(tǒng)視場(Field of view,F(xiàn)OV)內(nèi)可分辨的像素點(diǎn)個數(shù), SBP越大,系統(tǒng)可傳輸?shù)男畔⒕驮截S富。
2022-08-31 10:06:022516

光學(xué)掃描成像測量機(jī)高效精準(zhǔn)測量PCB的平面度和翹曲度

VX9700光學(xué)掃描成像測量機(jī)以光學(xué)成像測量系統(tǒng)為基礎(chǔ),非接觸式傳感器,結(jié)合高精度分析算法,可以精準(zhǔn)計算測量位的平面度和翹曲度數(shù)據(jù),且即使在多塊PCB板同時測量的情況下,也穩(wěn)定進(jìn)行。
2022-09-28 11:31:18727

光學(xué)成像技術(shù)的了解與研究

視覺是人類獲取客觀世界信息的主要途徑(據(jù)估計人類感知外界信息有80%來自視覺),但在時間、空間、靈敏度、光譜、分辨力等方面都有局限性。光學(xué)成像技術(shù)利用各種光學(xué)成像系統(tǒng)獲得客觀景物圖像,通過光信息的可視化可延伸并擴(kuò)展人眼的視覺人性。
2022-10-10 17:50:283486

基于一種集成化的元成像芯片架構(gòu)

完美光學(xué)成像是人類感知世界的終極目標(biāo)之一,但這個目標(biāo)卻從根本上受制于鏡面加工誤差與復(fù)雜環(huán)境擾動所引起的光學(xué)像差。
2022-10-24 09:45:26640

計算光學(xué)成像技術(shù)的基本概念、內(nèi)涵和優(yōu)勢

計算光學(xué)成像,顧名思義,是把“計算”融入到光學(xué)圖像形成過程中任何一個或者多個環(huán)節(jié)的一類新型的成像技術(shù)或系統(tǒng)光學(xué)圖像的形成與場景/物體的照明模式、系統(tǒng)光學(xué)傳遞函數(shù)、像感器的采樣三個因素息息相關(guān)
2022-11-17 11:23:523142

萊森光學(xué)成功試飛多旋翼無人機(jī)高光譜成像系統(tǒng)

2022年11月30日,萊森光學(xué)(深圳)有限公司的技術(shù)人員外出至東莞市大嶺山森林公園。對iSpecHyper-VM100 無人機(jī)高光譜成像系統(tǒng)進(jìn)行試飛測試。本次外出的目的是為了,驗(yàn)證
2022-12-07 11:49:23797

光學(xué)成像技術(shù):阿貝成像原理和實(shí)驗(yàn)解析

阿貝成像原理是1873年,德國科學(xué)家阿貝在研究如何提高顯微鏡分辨本領(lǐng)時提出的;原理指出,成像分為兩個步驟,第一步是相干光照明下,物光在透鏡后焦面上形成特殊的衍射光分布;第二步是衍射光繼續(xù)向前傳播,復(fù)合成像
2022-12-23 09:53:175451

計算光學(xué)成像:何來,何處,何去,何從?

一個典型的光學(xué)成像系統(tǒng)主要由光源、光學(xué)鏡頭組、光探測器三部分組成。光學(xué)鏡頭將三維場景目標(biāo)發(fā)出或者透/反/散射的光線聚焦在表面上,探測器像素和樣品之間通過建立一種直接的一一對應(yīng)關(guān)系來獲取圖像
2023-01-13 11:23:122105

計算光學(xué)成像:突破傳統(tǒng)光學(xué)成像極限

隨著傳感器、云計算、人工智能等新一代信息技術(shù)的不斷演進(jìn),新型解決方案逐步浮出水面——計算光學(xué)成像。計算光學(xué)成像以具體應(yīng)用任務(wù)為準(zhǔn)則,通過多維度獲取或編碼光場信息(如角度、偏振、相位等),為傳感器設(shè)計遠(yuǎn)超人眼的感知新范式;
2023-01-15 15:13:39886

為什么跨尺度光學(xué)成像的意義至關(guān)重要呢?

光學(xué)成像系統(tǒng)獲取的信息量由光學(xué)系統(tǒng)的視場和分辨率決定。寬視場能夠覆蓋更廣的觀察范圍,高分辨率能夠獲得物體更多的細(xì)節(jié)信息。
2023-01-16 15:08:471870

我國科研團(tuán)隊(duì)合作在散射成像研究方面取得進(jìn)展

光學(xué)成像的本質(zhì)是信息的傳遞,成像系統(tǒng)則提供了信息傳遞的信道。傳統(tǒng)光學(xué)成像系統(tǒng)可以根據(jù)光路中各個部分已知的傳輸函數(shù)來計算系統(tǒng)響應(yīng),換言之,信道的結(jié)構(gòu)和特性明確可知。當(dāng)使用散射介質(zhì)替換傳統(tǒng)透鏡時,仍然可以從光場中提取圖像
2023-02-24 11:37:23376

光學(xué)成像設(shè)計之偏振探測成像技術(shù)

降低成像過程中的干擾因素。利用線偏振和圓偏振技術(shù)來減少光在散射環(huán)境的傳播過程中產(chǎn)生的前向散射光和后向散射光的影響,從而提升目標(biāo)物體的圖像質(zhì)量。
2023-04-12 08:25:001112

機(jī)器視覺的成像系統(tǒng)綜述

機(jī)器視覺的成像系統(tǒng)的簡化模型,如圖1所示。光學(xué)成像系統(tǒng)對現(xiàn)實(shí)世界中的可見光、紅外線、X射線等實(shí)施某種轉(zhuǎn)換T(x,y),將物理量轉(zhuǎn)換為電信號,再經(jīng)圖像采集設(shè)備采樣、量化后生成數(shù)字圖像。
2023-04-11 10:22:51624

光學(xué)偏振成像技術(shù)的研究、應(yīng)用與進(jìn)展

偏振成像技術(shù)作為一種新型的光學(xué)成像技術(shù),可以實(shí)現(xiàn)抑制背景噪聲、提高探測距離、獲取目標(biāo)細(xì)節(jié)特征和識別偽裝目標(biāo)等功能。
2023-04-15 16:39:292230

智能化驅(qū)使下,中圖儀器光學(xué)3D成像測量技術(shù)的創(chuàng)新應(yīng)用

中圖儀器影像測量儀、共聚焦顯微鏡、白光干涉儀基于3D光學(xué)成像測量非接觸、操作簡單、速度快等優(yōu)點(diǎn),能提供常規(guī)尺寸光學(xué)測量儀器、微觀尺寸光學(xué)測量儀器、大尺寸光學(xué)測量儀器等精密測量解決方案!
2023-04-20 17:11:44396

機(jī)器視覺成像系統(tǒng)綜述

機(jī)器視覺的成像系統(tǒng)的簡化模型,如圖1所示。 光學(xué)成像系統(tǒng)對現(xiàn)實(shí)世界中的可見光、紅外線、X射線等實(shí)施某種轉(zhuǎn)換T(x,y),將物理量轉(zhuǎn)換為電信號,再經(jīng)圖像采集設(shè)備采樣、量化后生成數(shù)字圖像。
2023-05-14 16:48:56644

基于波前編碼的擴(kuò)展景深短波紅外成像系統(tǒng)

點(diǎn)擴(kuò)散函數(shù)描述光學(xué)系統(tǒng)對點(diǎn)光源的輸出響應(yīng),理想的點(diǎn)擴(kuò)散函數(shù)近似能量集中的小支持域脈沖函數(shù)。在經(jīng)典光學(xué)理論中,光學(xué)成像過程是物空間目標(biāo)和點(diǎn)擴(kuò)散函數(shù)的卷積。
2023-05-30 18:18:12289

光學(xué)成像質(zhì)量評價

從物面上任意一點(diǎn)發(fā)出的光波,攜帶著該物點(diǎn)的信息,本來是向著所有方向發(fā)射的,但成像鏡頭都有孔徑光欄,限制了物點(diǎn)發(fā)出的光束,只接收孔徑角2u 范圍內(nèi)的光束進(jìn)入系統(tǒng)并傳遞,參與成像。超出該孔徑的光束通不過透鏡。
2023-06-07 14:34:31554

【虹科】機(jī)器視覺為醫(yī)學(xué)成像帶來成本和臨床效益(一)

從影像輔助手術(shù)到醫(yī)療診斷系統(tǒng),實(shí)時成像技術(shù)正推動著醫(yī)療保健服務(wù)方式的根本性變更。隨著醫(yī)學(xué)成像的廣泛應(yīng)用,工程師正在尋求新的方法,從而更加經(jīng)濟(jì)有效地傳輸高帶寬視頻。之前醫(yī)學(xué)成像系統(tǒng)依賴于電信、廣播
2021-10-21 17:32:11377

捕獲“彩虹”超分辨率的位移光譜成像

基于成像的傳感技術(shù)是實(shí)現(xiàn)生物或化學(xué)方面一些重要信息可視化的主要工具。然而,由于經(jīng)典光學(xué)存在衍射極限,為了實(shí)現(xiàn)更好的成像能力,傳統(tǒng)的光學(xué)成像系統(tǒng)通常需要龐大的體積,并且價格昂貴。微型納米等離子體結(jié)構(gòu)中納米尺度上的超慢波可以改善光與物質(zhì)的相互作用,其獨(dú)特的潛力備受關(guān)注。
2023-06-20 12:35:13278

折衍射混合成像光學(xué)系統(tǒng)設(shè)計

摘要 :討論了衍射光學(xué)元件的特殊成像性質(zhì);提出了帶寬積分平均衍射效率的概念和應(yīng)用;給出了作者在國內(nèi)外完成的幾個折衍射混合成像光學(xué)系統(tǒng)的應(yīng)用實(shí)例,包括一個用衍射光學(xué)元件復(fù)消色差的長焦距光學(xué)系統(tǒng)
2023-07-02 09:59:19442

基于SLM的計算散射成像(鬼成像)系統(tǒng)

概述 光學(xué)成像在理論研究和日常生活中都發(fā)揮了重要的作用。傳統(tǒng)的光學(xué)成像方式是對光場強(qiáng)度分布測量,是通過光場的一階關(guān)聯(lián)信息(強(qiáng)度與位相)來獲得物體的信息,如顯微鏡、照相機(jī)、望遠(yuǎn)鏡等。散射成像又稱
2023-08-11 11:43:30394

光學(xué)頻段碳化硅極化激元超透鏡為光學(xué)成像發(fā)展提供新思路

》在線發(fā)表。 找到一雙又一雙“火眼金睛”,不斷把微觀世界看清楚,是許多科研人員的研究目標(biāo)。基于極化激元和超構(gòu)材料構(gòu)筑的超透鏡,此前已將光學(xué)成像分辨率提升至數(shù)百納米水平,借此可直接觀測微觀物質(zhì),被廣泛應(yīng)用于生物醫(yī)
2023-08-24 09:32:55563

成像光學(xué)中的邊緣光線原理是什么

成像光學(xué)在上世紀(jì)的 60 年代就出現(xiàn)了, 1965年因?yàn)檠芯啃枰?Winston教授設(shè)計了復(fù)合拋物聚能器,這是一種新型光能收集器件。這一器件的問世象征著非成像光學(xué)的誕生。
2023-08-29 11:00:50678

基于離軸成像光學(xué)系統(tǒng)的設(shè)計

? ? ? ? ? 針對自由曲面能提升成像光學(xué)系統(tǒng)的性能和校正像差的特點(diǎn),分析了自由曲面在離軸光學(xué)系統(tǒng)中的應(yīng)用優(yōu)勢。光學(xué)系統(tǒng)選用視場角為30°×11°、焦距為150 mm、F數(shù)為3的Cook-TMA
2023-09-10 09:06:32602

基于光學(xué)成像的物體三維重建技術(shù)研究

隨著計算機(jī)科學(xué)和數(shù)字成像技術(shù)的飛速發(fā)展,光學(xué)成像技術(shù)在許多領(lǐng)域中得到了廣泛應(yīng)用,其中之一便是物體三維重建。物體三維重建技術(shù)是一種通過計算機(jī)處理圖像數(shù)據(jù),獲得物體三維信息的技術(shù)。光學(xué)成像技術(shù)作為物體
2023-09-15 09:29:34493

計算光學(xué)成像如何突破傳統(tǒng)光學(xué)成像極限

傳統(tǒng)光學(xué)成像建立在幾何光學(xué)基礎(chǔ)上,借鑒人眼視覺“所見即所得”的原理,而忽略了諸多光學(xué)高維信息。當(dāng)前傳統(tǒng)光學(xué)成像在硬件功能、成像性能方面接近物理極限,在眾多領(lǐng)域已無法滿足應(yīng)用需求。
2023-11-17 17:08:01215

2023十大科技趨勢之一:計算光學(xué)成像

計算光學(xué)成像是一個新興多學(xué)科交叉領(lǐng)域。它以具體應(yīng)用任務(wù)為準(zhǔn)則,通過多維度獲取或編碼光場信息(如角度、偏振、相位等),為傳感器設(shè)計遠(yuǎn)超人眼的感知新范式;
2023-11-17 17:10:33783

新技術(shù):使用超光學(xué)器件進(jìn)行熱成像

研究人員開發(fā)出一種新技術(shù),該技術(shù)使用超光學(xué)器件進(jìn)行熱成像。能夠提供有關(guān)成像物體的更豐富信息,可以拓寬熱成像在自主導(dǎo)航、安全、熱成像、醫(yī)學(xué)成像和遙感等領(lǐng)域的應(yīng)用。
2024-01-16 11:43:10105

一種基于擴(kuò)散模型的傅里葉單像素成像高分辨率迭代重建方法

傅里葉單像素成像(FSPI)是一種基于傅里葉分析理論的計算光學(xué)成像技術(shù)。
2024-01-24 09:43:23208

用于體內(nèi)超聲和光聲雙模顯微成像的超靈敏透明超聲換能器設(shè)計

超聲成像(USI)和光學(xué)成像(OI)傳感器因其簡單、安全及高成本效益,非常適合傳感器融合應(yīng)用。
2024-02-29 09:47:54181

基于光子糾纏的自適應(yīng)光學(xué)成像技術(shù)應(yīng)用

對引導(dǎo)星的依賴給顯微鏡成像細(xì)胞和組織等不含亮點(diǎn)的樣本帶來了問題。科學(xué)家們利用圖像處理算法開發(fā)了無引導(dǎo)星的自適應(yīng)光學(xué)系統(tǒng),但這些系統(tǒng)可能會因結(jié)構(gòu)復(fù)雜的樣本而失效。
2024-03-11 11:29:4254

淺談超分辨光學(xué)成像

分辨光學(xué)定義及應(yīng)用 分辨光學(xué)成像特指分辨率打破了光學(xué)顯微鏡分辨率極限(200nm)的顯微鏡,技術(shù)原理主要有受激發(fā)射損耗顯微鏡技術(shù)和光激活定位顯微鏡技術(shù)。 管中亦可窺豹——受激發(fā)射損耗顯微鏡 傳統(tǒng)光學(xué)
2024-03-15 06:35:4170

已全部加載完成