PCB布線規則詳解解說
電源、地線的處理 既使在整個PCB板中的布線完成得都很好,但由于電源、 地線的考慮不周到而引起的干擾,會使產品的性能下降,有時甚至影響到產品的成功率。所以對電、 地線的布線要認真對待,把電、地線所產生的噪音干擾降到最低限度,以保證產品的質量。 對每個從事電子產品設計的工程人員來說都明白地線與電源線之間噪音所產生的原因, 現只對降低式抑制噪音作以表述: 眾所周知的是在電源、地線之間加上去耦電容。 盡量加寬電源、地線寬度,最好是地線比電源線寬,它們的關系是: 地線>電源線>信號線,通常信號線寬為:0.2~0.3mm,最經細寬度可達0.05~0.07mm,電源線為1.2~2.5 mm 對數字電路的PCB可用寬的地導線組成一個回路, 即構成一個地網來使用(模擬電路的地不能這樣使用) 用大面積銅層作地線用,在印制板上把沒被用上 的地方都與地相連接作為地線用。或是做成多層板電源,地線各占用一層。2、數字電路與模擬電路的共地處理 現在有許多PCB不再是單一功能電路(數字或模擬電路),而是由數字電路和模擬電路混合構成的。因此在布線時就需要考慮它們之間互相干擾問題,特別是地線上的噪音干擾。 數字電路的頻率高,模擬電路的敏感度強,對信號線來說,高頻的信號線盡可能遠離敏感的模擬電路器件,對地線來說,整人PCB對外界只有一個結點,所以必須在PCB內部進行處理數、模共地的問題,而在板內部數字地和模擬地實際上是分開的它們之間互不相連,只是在PCB與外界連接的接口 處(如插頭等)。數字地與模擬地有一點短接,請注意,只有一個連接點。也有在PCB上不共地的,這由系統設計來決定。
3、信號線布在電(地)層上 在多層印制板布線時,由于在信號線層沒有布完的線剩下已經不多,再多加層數就會造成浪費也會給生產增加一定的工作量,成本也相應增加了,為解決這個矛盾,可以考慮在電(地)層上進行布線。首先應考用電源層,其次才是地層。因為最好是保留地層的完整性。
4、大面積導體中連接腿的處理 在大面積的接地(電)中,常用元器件的腿與其連接,對連接腿的處理需要進行綜合的考慮,就電氣性能而言,元件腿的焊盤與銅面滿接為好,但對元件的焊接裝配就存在一些不良隱患如:①焊接需要大功率加熱器。②容易造成虛焊點。所以兼顧電氣性能與工藝需要,做成十字花焊盤,稱之為熱隔離(heat shield)俗稱熱焊盤(Thermal),這樣,使在焊接時因截面過分散熱而產生虛焊點的可能性大大減少。多層板的接電(地)層腿的處理相同。
5、布線中網絡系統的作用 在許多CAD系統中,布線是依據網絡系統決定的。網格過密,通路雖然有所增加,但步進太小,圖場的據量過大,這必然對設備的存貯空間有更高的要求,同時也對象計算機類電子產品的運算速度有極大的影響。而有些通路是無 效的,如被元件腿的焊盤占用的或被安裝孔、定們孔所占用的等。網格過疏,通路太少對布通率的影響極大。所以要有一個疏密合理的網格系統來支持布線的進行。 標準元器件兩腿之間的距離為0.1英寸(2.54mm),所以網格系統的基礎一般就定為0.1英寸 (2.54 mm)或小于0.1英寸的整倍數,如:0.05英寸、0.025英寸、0.02英寸等。
6、設計規則檢查(DRC) 布線設計完成后,需認真檢查布線設計是否符合設計者所制定的規則,同時也需確認所制定的規則是 否符合印制板生產工藝的需求,一般檢查有如下幾個方面: 線與線,線與元件焊盤,線與貫通孔,元件焊盤與通孔,貫通孔 貫通孔之間的距離是否合理,是否滿足生產要求。 電源線和地線的寬度是否合適,電源與地線之間是否緊耦合(低的波阻抗 )?在PCB中是否還有能讓地線加寬的地方。 對于關鍵的信號線是否采取了最佳措施,如長度最短,加保護線,輸入線及輸出線 被明顯地分開。 模擬電路和數字電路部分,是否有各自獨立的地線。 后加在PCB中的圖形(如圖標、注標)是否會造成信號短 路。 對一些不理想的線形進行修改。 在PCB上是否加有工藝線?阻焊是否符合生產工藝的要求,阻焊尺寸是否適,字符標志 是否壓在器件焊盤上,以免影響電裝質量。 多層板中的電源地層的外框邊緣是否縮小,如電源地層的銅箔露出板外容易造成短 路。概述 本文檔的目的在于說明使用PADS的印制板設計軟件PowerPCB進行印制板設計的流程和一些注意事項,為一個工作組的 設計人員提供設計規范,方便設計人員之間進行交流和相互檢查。
2、設計流程 PCB的設計流程分為網表輸入、規則設置、元器件布局、布線、檢查、復查、輸出六個步驟.
2.1 網表輸入???????
網表輸入有兩種方法,一種是使用PowerLogic的OLE PowerPCB Connection功能,選擇Send Netlist,應用OLE,可以隨時保 持原理圖和PCB圖的一致,盡量減少出錯的可能。
另一種方法是直接在PowerPCB中裝載網表,選擇File->Import,將原理圖生成的網表輸入進來。
2.2 規則設置 如果在原理圖設計階段就已經把PCB的設計規則設置好的話,就不用再進行設置這些規則了,因為輸入網表時,設計規則已隨網表輸入進PowerPCB了。如果修改了設計規則,必須同步原理圖,保證原理圖和PCB 的一致。除了設計規則和層定義外,還有一些規則需要設置,比如Pad Stacks,需要修改標準過孔的大小。如果設計者新建了一個 焊盤或過孔,一定要加上Layer 25。 注意: PCB設計規則、層定義、過孔設置、CAM輸出設置已經作成缺省啟動文件,名稱為Default.stp,網表輸入進來以后,按照設計的實際情況,把電源網絡和地分配給電源層和地層,并設置其它高級規則。在所有的規則都設置好以后,在PowerLogic中,使用OLE PowerPCB Connection的Rules From PCB功能,更新原理圖中的規則設置,保證原 理圖和PCB圖的規則一致。
2.3 元器件布局 網表輸入以后,所有的元器件都會放在工作區的零點,重疊在一起,下一步的工作就是把這些元器件分開,按照一些規則擺放整齊,即元器件布局。PowerPCB提供了兩種方法,手工布局和自動布局。
2.3.1 手工布局
1. 工具印制板的結構尺寸畫出板邊(Board Outline)。
2. 將元器件分散(Disperse Components),元器件會排列在板邊的周圍。
3. 把元器件一個一個地移動、旋轉,放到板邊以內,按照一定的規則擺放整齊。
2.3.2 自動布局?????? PowerPCB提供了自動布局和自動的局部簇布局,但對大多數的設計來說,效果并不理想,不推薦使用。
2.3.3 注意事項
a. 布局的首要原則是保證布線的布通率,移動器件時注意飛線的連接,把有連線關系的器件放在一起
b. 數字器件和模擬器件要分開,盡量遠離 c. 去耦電容盡量靠近器件的VCC
d. 放置器件時要考慮以后的焊接,不要太密集
e. 多使用軟件提供的Array和Union功能,提高布局的效率
2.4 布線?????? 布線的方式也有兩種,手工布線和自動布線。
PowerPCB提供的手工布線功能十分強大,包括自動推擠、在線設計規則檢查(DRC),自動布線由Specctra的布線引擎進行,通常
這兩種方法配合使用,常用的步驟是手工—自動—手工。
2.4.1 手工布線
1. 自動布線前,先用手工布一些重要的網絡,比如高頻時鐘、主電源等,這些網絡往往對走線距離、線寬、線間距、屏蔽等有特殊
的要求;另外一些特殊封裝,如BGA,自動布線很難布得有規則,也要用手工布線。
2. 自動布線以后,還要用手工布線對PCB的走線進行調整。
2.4.2 自動布線 手工布線結束以后,剩下的
網絡就交給自動布線器來自布。選擇Tools->SPECCTRA,啟動Specctra布線器的接口,設置好DO文件,按Continue就啟動了Specctra
布線器自動布線,結束后如果布通率為100%,那么就可以進行手工調整布線了;如果不到100%,說明布局或手工布線有問題,需要
調整布局或手工布線,直至全部布通為止。
2.4.3 注意事項
a. 電源線和地線盡量加粗
b. 去耦電容盡量與VCC直接連接
c. 設置Specctra的DO文件時,首先添加Protect all wires命令,保護手工布的線不被自動布線器重布
d. 如果有混合電源層,應該將該層定義為Split/mixed Plane,在布線之前將其分割,布完線之后,使用Pour Manager的Plane
?????? Connect進行覆銅
e. 將所有的器件管腳設置為熱焊盤方式,做法是將Filter設為Pins,選中所有的管腳,修改屬性,在Thermal選項前打勾
f. 手動布線時把DRC選項打開,使用動態布線(Dynamic Route)
2.5 檢查?????? 檢查的項目有間距(Clearance)、連接性(Connectivity)、高速規則(High Speed)和電源層(Plane),這些項目
可以選擇Tools->Verify Design進行。如果設
置了高速規則,必須檢查,否則可以跳過這一項。檢查出錯誤,必須修改布局和布線。 注意:?????? 有些錯誤可以忽略,例如有些接
插件的Outline的一部分放在了板框外,檢查間距時會出錯;另外每次修改過走線和過孔之后,都要重新覆銅一次。
2.6 復查????? 復查根據“PCB檢查表”,內容包括設計規則,層定義、線寬、間距、焊盤、過孔設置;還要重點復查器件布局的合理
性,電源、地線網絡的走線,高速時鐘網絡的走線與屏蔽,去耦電容的擺放和連接等。復查不合格,設計者要修改布局和布線,合 格之后,復查者和設計者分別簽字。
2.7 設計輸出???? PCB設計可以輸出到打印機或輸出光繪文件。打印機可以把PCB分層打印,便于設計者和復查者檢查;光繪文件交給
制板廠家,生產印制板。光繪文件的輸出十分重要,關系到這次設計的成敗,下面將著重說明輸出光繪文件的注意
事項。
a. 需要輸出的層有布線層(包括頂層、底層、中間布線層)、電源層(包括VCC層和GND層)、絲印層(包括頂層絲印、底層絲印)
、阻焊層(包括頂層阻焊和底層阻焊),另外還要生成鉆孔文件(NC Drill) b. 如果電源層設置為Split/Mixed,那么在Add
Document窗口的Document項選擇Routing,并且每次輸出光繪文件之前,都要對PCB圖使用Pour Manager的Plane Connect進行覆銅;
如果設置為CAM Plane,則選擇Plane,在設置Layer項的時候,要把Layer25加上,在Layer25層中選擇Pads和Viasc. 在設備設置窗口
(按Device Setup),將Aperture的值改為199 d. 在設置每層的Layer時,將Board Outline選上
e. 設置絲印層的Layer時,不要選擇Part Type,選擇頂層(底層)和絲印層的Outline、Text、Line
f. 設置阻焊層的Layer時,選擇過孔表示過孔上不加阻焊,不選過孔表示家阻焊,視具體情況確定
g. 生成鉆孔文件時,使用PowerPCB的缺省設置,不要作任何改動
h. 所有光繪文件輸出以后,用CAM350打開并打印,由設計者和復查者根據“PCB檢查表”檢查過孔(via)是多層PCB的重要組
成部分之一,鉆孔的費用通常占PCB制板費用的30%到40%。
?????? 簡單的說來,PCB上的每一個孔都可以稱之為過孔。從作用上看,過孔可以分成兩類:一是用作各層間的電氣連接;
?????? 二是用作器件的固定或定位。如果從工藝制程上來說,這些過孔一般又分為三類,即盲孔(blind via)、埋孔(buried via)和通孔(through via)。盲孔位于印刷線路板的頂層和底層表面,具有一定深度,用于表層線路和下面的內層線路的連接,孔的深度通常不 超過一定的比率(孔徑)。埋孔是指位于印刷線路板內層的連接孔,它不會延伸到線路板的表面。上述兩類孔都位于線路板的內層, 層壓前利用通孔成型工藝完成,在過孔形成過程中可能還會重疊做好幾個內層。第三種稱為通孔,這種孔穿過整個線路板,可用于實 現內部互連或作為元件的安裝定位孔。由于通孔在工藝上更易于實現,成本較低,所以絕大部分印刷電路板均使用它,而不用另外兩 種過孔。以下所說的過孔,沒有特殊說明的,均作為通孔考慮。 從設計的角度來看,一個過孔主要由兩個部分組成,一是中間的鉆孔 (drill hole),二是鉆孔周圍的焊盤區,見下圖。這兩部分的尺寸大小決定了過孔的大小。很顯然,在高速,高密度的PCB設計時,設 計者總是希望過孔越小越好,這樣板上可以留有更多的布線空間,此外,過孔越小,其自身的寄生電容也越小,更適合用于高速電路。
但孔尺寸的減小同時帶來了成本的增加,而且過孔的尺寸不可能無限制的減小,它受到鉆孔(drill)和電鍍plating)等工藝技術的限制:孔越小,鉆孔需花費的時間越長,也越容易偏離中心位置;且當孔的深度超過鉆孔直徑的6倍時,就無法保證孔壁能均勻鍍銅。比如,現在正常的一塊6層PCB板的厚度(通孔深度)為50Mil左右,所以PCB廠家能提供的鉆孔直徑最小只能達到8Mil。
?二、過孔的寄
生電容 過孔本身存在著對地的寄生電容,如果已知過孔在鋪地層上的隔離孔直徑為D2,過孔焊盤的直徑為D1,PCB板的厚度為T,板基材 介電常數為ε,則過孔的寄生電容大小近似于: C=1.41εTD1/(D2-D1) 過孔的寄生電容會給電路造成的主要影響是延長了信號的上升 時間,降低了電路的速度。舉例來說,對于一塊厚度為50Mil的PCB板,如果使用內徑為10Mil,焊盤直徑為20Mil的過孔,焊盤與地鋪 銅區的距離為32Mil,則我們可以通過上面的公式近似算出過孔的寄生電容大致是:C=1.41x4.4x0.050x0.020/(0.032-0.020)=0.517pF, 這部分電容引起的上升時間變化量為:T10-90=2.2C(Z0/2)=2.2x0.517x(55/2)=31.28ps 。從這些數值可以看出,盡管單個過孔的寄生 電容引起的上升延變緩的效用不是很明顯,但是如果走線中多次使用過孔進行層間的切換,設計者還是要慎重考慮的。
三、過孔的寄生電感 同樣,過孔存在寄生電容的同時也存在著寄生電感,在高速數字電路的設計中,過孔的寄生電感帶來的危害
往往大于寄生電容的影響。它的寄生串聯電感會削弱旁路電容的貢獻,減弱整個電源系統的濾波效用。我們可以用下面的公式來簡 單地計算一個過孔近似的寄生電感: L=5.08h[ln(4h/d)+1]其中L指過孔的電感,h是過孔的長度,d是中心鉆孔的直徑。從式中可以 看出,過孔的直徑對電感的影響較小,而對電感影響最大的是過孔的長度。仍然采用上面的例子,可以計算出過孔的電感為:L= 5.08x0.050[ln(4x0.050/0.010)+1]=1.015nH 。如果信號的上升時間是1ns,那么其等效阻抗大小為:XL=πL/T10-90=3.19Ω。這樣 的阻抗在有高頻電流的通過已經不能夠被略,特別要注意,旁路電容在連接電源層和地層的時候需要通過兩個過孔,這樣過孔的寄生電感就會成倍增加。
四、高速PCB中的過孔設計 通過上面對過孔寄生特性的分析,我們可以看到,在高速PCB設計中,看似簡單的過 孔往往也會給電路
1、從成本和信號質量兩方面考慮,選擇合理尺寸的過孔大小。比如對6-10層的內 存模塊PCB設計來說,選用10/20Mil(鉆孔/焊盤)的過孔較好,對于一些高密度的小尺寸的板子,也可以嘗試使用8/18Mil的過孔。目前技術條件下,很難使用更小尺寸的過孔了。對電源或地線的過孔則可以考慮使用較大尺寸,以減小阻抗。
2、上面討論的兩個公式可以得出,使用較薄的PCB板有利于減小過孔的兩種寄 生參數。
3、PCB板上的信號走線盡量不換層,也就是說盡量不要使用不必要的過孔。
4、電源和地的管腳要就近打過孔,過孔和管腳之間的引線越短越好,因為它們會 導致電感的增加。同時電源和地的引線要盡可能粗以減少阻抗。
5、在信號換層的過孔附近放置一些接地的過孔,以便為信號提供最近的回路。甚至可以在PCB板上大量放置一些多余的接地過孔。當
然,在設計時還需要靈活多變。前面討論的過孔模型是每層均有焊盤的情況,也有的時候,我們可以將某些層的焊盤減小甚至去掉。 特別是在過孔密度非常大的情況下,可能會導致在鋪銅層形成一個隔斷回路的斷槽,解決這樣的問題除了移動過孔的位置,我們還可以考慮將過孔在該鋪銅層的焊盤尺寸減小。
?