濾波電容簡介
濾波電容是并聯在整流電源電路輸出端,用以降低交流脈動波紋系數、平滑直流輸出的一種儲能器件。在使用將交流轉換為直流供電的電子電路中,濾波電容不僅使電源直流輸出平穩,降低了交變脈動波紋對電子電路的影響,同時還可吸收電子電路工作過程中產生的電流波動和經由交流電源串入的干擾,使得電子電路的工作性能更加穩定。
濾波電容在電路中的符號一般用“C“表示。在50赫茲市電的整流電路中,為了獲得好的濾波效果,選擇的濾波電容的電容量都比較大,最常用的為數百至數千微法的電解電容,要求高的場合也有使用鉭電容或鈮電容的;但在幾十千赫茲甚至更高頻率的場合,對頻率特性的要求比對容量的要求顯得重要得多。
濾波電容特點
1、溫升低
諧波濾波器回路由電容器串聯電抗器組成,在某一諧波階次形成最低阻抗,用以吸收大量諧波電流,電容器的質量會影響諧波濾波器的穩定吸收效果,電容器的使用壽命跟溫度有很大的關系,溫度越高壽命越低,濾波全膜電容器具有溫升低等特點,可以保證其使用壽命。
2、損耗低
介質損耗角正切值(tgδ):≤0.0003
3、安全性
符合GB、IEC標準,內部單體電容器均附裝保護裝置;當線路或單體電容器發生異常時,該保護裝置將會立即動作,自動切斷電源,以防二次災害的發生。附裝放電電阻,可確保用電及維護保養之安全。外殼采用鋼板沖壓而成,內外部涂上耐候性良好之高溫烤漆安全性特高。
4、便捷性
體積小且重量輕,搬運安裝極為方便
濾波電容作用
濾波電容用在電源整流電路中,用來濾除交流成分。使輸出的直流更平滑。而且對于精密電路而言,往往這個時候會采用并聯電容電路[1] 的組合方式來提高濾波電容的工作效果。
低頻濾波電容主要用于市電濾波或變壓器整流后的濾波,其工作頻率與市電一致為50Hz;而高頻濾波電容主要工作在開關電源整流后的濾波,其工作頻率為幾千Hz到幾萬Hz。濾波電容在開關電源中起著非常重要的作用,如何正確選擇濾波電容,尤其是輸出濾波電容的選擇則是每個工程技術人員十分關心的問題。
50赫茲工頻電路中使用的普通電解電容器,其脈動電壓頻率僅為100赫茲,充放電時間是毫秒數量級。為獲得更小的脈動系數,所需的電容量高達數十萬微法,因此普通低頻鋁電解電容器的目標是以提高電容量為主,電容器的電容量、損耗角正切值以及漏電流是鑒別其優劣的主要參數。而開關電源中的輸出濾波電解電容器,其鋸齒波電壓頻率高達數萬赫茲,甚至是數十兆赫茲。這時電容量并不是其主要指標,衡量高頻鋁電解電容優劣的標準是“阻抗- 頻率”特性。要求在開關電源的工作頻率內要有較低的等效阻抗,同時對于半導體器件工作時產生的高頻尖峰信號具有良好的濾波作用。
濾波電容越大濾波效果越好嗎
理論上,好像是濾波電容越大效果越好,但實際應用電路中并非如此。因為當濾波電容達到一定門限值后,其改善效果幾乎沒有任何提高。更嚴重問題是,濾波電容太大的話,電源開機和關斷時間都會拉長,有可能導致其他數字器件比如MCU 上電復位失敗。這種故障在單片機和液晶顯示中是比較常見的。
所以,濾波電容還是應該本著夠用就好的原則來選擇容量大小。
濾波電容如何選擇
經過整流橋以后的是脈動直流,波動范圍很大。后面一般用大小兩個電容
大電容用來穩定輸出,眾所周知電容兩端電壓不能突變,因此可以使輸出平滑
小電容是用來濾除高頻干擾的,使輸出電壓純凈
電容越小,諧振頻率越高,可濾除的干擾頻率越高
一、容量選擇:
(1)大電容,負載越重,吸收電流的能力越強,這個大電容的容量就要越大
(2)小電容,憑經驗,一般104即可
1)別人的經驗(來自互聯網)
1、電容對地濾波,需要一個較小的電容并聯對地,對高頻信號提供了一個對地通路。
2、電源濾波中電容對地腳要盡可能靠近地。
3、理論上說電源濾波用電容越大越好,一般大電容濾低頻波,小電容濾高頻波。
4、可靠的做法是將一大一小兩個電容并聯,一般要求相差兩個數量級以上,以獲得更大的濾波頻段。
具體案例: AC220-9V再經過全橋整流后,需加的濾波電容是多大的? 再經78LM05后需加的電容又是多大?
前者電容耐壓應大于15V,電容容量應大于2000微發以上。 后者電容耐壓應大于9V,容量應大于220微發以上。
2)有一電容濾波的單相橋式整流電路,輸出電壓為24V,電流為500mA,要求:
(1)選擇整流二極管;
(2)選擇濾波電容;
(3)另:電容濾波是降壓還是增壓?
(1)因為橋式是全波,所以每個二極管電流只要達到負載電流的一半就行了,所以二極管最大電流要大于250mA;電容濾波式橋式整流的輸出電壓等于輸入交流電壓有效值的1.2倍,所以你的電路輸入的交流電壓有效值應是20V,而二極管承受的最大反壓是這個電壓的根號2倍,所以,二極管耐壓應大于28.2V。
(2)選取濾波電容:1、電壓大于28.2V;2、求C的大小:公式RC≥(3--5)×0.1秒,本題中R=24V/0.5A=48歐
所以可得出C≥(0.00625--0.0104)F,即C的值應大于6250μF。
(3)電容濾波是升高電壓。
二、濾波電容的選用原則
在電源設計中,濾波電容的選取原則是: C≥2.5T/R
其中:C為濾波電容,單位為UF;
T為頻率,單位為Hz
R為負載電阻,單位為Ω
當然,這只是一般的選用原則,在實際的應用中,如條件(空間和成本)允許,都選取C≥5T/R.
三、濾波電容的大小的選取
PCB制版電容選擇
印制板中有接觸器、繼電器、按鈕等元件時.操作它們時均會產生較大火花放電,必須采用RC吸收電路來吸收放電電流。一般R取1~2kΩ,C取2.2~4.7μF。一般的10PF左右的電容用來濾除高頻的干擾信號,0.1UF左右的用來濾除低頻的紋波干擾,還可以起到穩壓的作用。
濾波電容具體選擇什么容值要取決于你PCB上主要的工作頻率和可能對系統造成影響的諧波頻率,可以查一下相關廠商的電容資料或者參考廠商提供的資料庫軟件,根據具體的需要選擇。至于個數就不一定了,看你的具體需要了,多加一兩個也挺好的,暫時沒用的可以先不貼,根據實際的調試情況再選擇容值。如果你PCB上主要工作頻率比較低的話,加兩個電容就可以了,一個慮除紋波,一個慮除高頻信號。如果會出現比較大的瞬時電流,建議再加一個比較大的鉭電容。
其實濾波應該也包含兩個方面,也就是各位所說的大容值和小容值的,就是去耦和旁路。原理我就不說了,實用點的,一般數字電路去耦0.1uF即可,用于10M以下;20M以上用1到10個uF,去除高頻噪聲好些,大概按C=1/f 。旁路一般就比較的小了,一般根據諧振頻率一般為0.1或0.01uF。
說到電容,各種各樣的叫法就會讓人頭暈目眩,旁路電容,去耦電容,濾波電容等等,其實無論如何稱呼,它的原理都是一樣的,即利用對交流信號呈現低阻抗的特性,這一點可以通過電容的等效阻抗公式看出來:Xcap=1/2лfC,工作頻率越高,電容值越大則電容的阻抗越小。在電路中,如果電容起的主要作用是給交流信號提供低阻抗的通路,就稱為旁路電容;如果主要是為了增加電源和地的交流耦合,減少交流信號對電源的影響,就可以稱為去耦電容;如果用于濾波電路中,那么又可以稱為濾波電容;除此以外,對于直流電壓,電容器還可作為電路儲能,利用沖放電起到電池的作用。而實際情況中,往往電容的作用是多方面的,我們大可不必花太多的心思考慮如何定義。本文里,我們統一把這些應用于高速PCB設計中的電容都稱為旁路電容。
電容的本質是通交流,隔直流,理論上說電源濾波用電容越大越好。但由于引線和PCB布線原因,實際上電容是電感和電容的并聯電路,(還有電容本身的電阻,有時也不可忽略)這就引入了諧振頻率的概念:ω=1/(LC)1/2在諧振頻率以下電容呈容性,諧振頻率以上電容呈感性。
因而一般大電容濾低頻波,小電容濾高頻波。這也能解釋為什么同樣容值的STM封裝的電容濾波頻率比DIP封裝更高。至于到底用多大的電容,這是一個參考。
不過僅僅是參考而已,用老工程師的話說——主要靠經驗。更可靠的做法是將一大一小兩個電容并聯,一般要求相差兩個數量級以上,以獲得更大的濾波頻段。
一般來講,大電容濾除低頻波,小電容濾除高頻波。電容值和你要濾除頻率的平方成反比,具體電容的選擇可以用公式C=4Pi*Pi /(R * f * f )電源濾波電容如何選取,掌握其精髓與方法,其實也不難。
1)理論上理想的電容其阻抗隨頻率的增加而減少(1/jwc),但由于電容兩端引腳的電感效應,這時電容應該看成是一個LC串連諧振電路,自諧振頻率即器件的FSR參數,這表示頻率大于FSR值時,電容變成了一個電感,如果電容對地濾波,當頻率超出FSR后,對干擾的抑制就大打折扣,所以需要一個較小的電容并聯對地,可以想想為什么?
原因在于小電容,SFR值大,對高頻信號提供了一個對地通路,所以在電源濾波電路中我們常
常這樣理解:大電容慮低頻,小電容慮高頻,根本的原因在于SFR(自諧振頻率)值不同,當然也可以想想為什么?如果從這個角度想,也就可以理解為什么電源濾波中電容對地腳為什么要盡可能靠近地了。
2)那么在實際的設計中,我們常常會有疑問,我怎么知道電容的SFR是多少?就算我知道SFR值,我如何選取不同SFR值的電容值呢?是選取一個電容還是兩個電容?
電容的SFR值和電容值有關,和電容的引腳電感有關,所以相同容值的0402,0603,或直插式電容的SFR值也不會相同,當然獲取SFR值的途徑有兩個,1)器件Data sheet,如22pf0402電容的SFR值在2G左右, 2)通過網絡分析儀直接量測其自諧振頻率,想想如何量測?S21?知道了電容的SFR值后,用軟件仿真,如RFsim99,選一個或兩個電路在于你所供電電路的工作頻帶是否有足夠的噪聲抑制比。仿真完后,那就是實際電路試驗,如調試手機接收靈敏度時,LNA的電源濾波是關鍵,好的電源濾波往往可以改善幾個dB。
一般來說, 選擇輸出濾波電容主要是為了獲得好的濾波效果,輸出電壓的紋波與芯片的工作方式(升壓或降壓)以及工作原理有關,單相和多相的計算方法是不同的。舉例來說,假如使用LTC3406B芯片,△Vout≈△IL(ESR+1/8fCout), 其中,△Vout是輸出電壓的紋波,△IL是電感的紋波電流,ESR是輸出濾波電容的內阻,f 是DC/DC的開關頻率, Cout是輸出濾波電容的容值。 通過該公式,可以方便地計算出需要的電容參數。
濾波電容范圍太廣了,這里簡單說說電源旁路(去藕)電容。
濾波電容的選擇要看你是用在局部電源還是全局電源。對局部電源來說就是要起到瞬態供電的作用。為什么要加電容來供電呢?是因為器件對電流的需求隨著驅動的需求快速變化(比如DDR controller),而在高頻的范圍內討論,電路的分布參數都要進行考慮。由于分布電感的存在,阻礙了電流的劇烈變化,使得在芯片電源腳上電壓降低--也就是形成了噪聲。而且,現在的反饋式電源都有一個反應時間--也就是要等到電壓波動發生了一段時間(通常是ms或者us級)才會做出調整,對于ns級的電流需求變化來說,這種延遲,也形成了實際的噪聲。所以,電容的作用就是要提供一個低感抗(阻抗)的路線,滿足電流需求的快速變化。
基于以上的理論,計算電容量就要按照電容能提供電流變化的能量去計算。選擇電容的種類,就需要按照它的寄生電感去考慮--也就是寄生電感要小于電源路徑的分布電感。