氣敏電阻的特性是什么
目前國產的氣敏元件有2種。一種是直熱式,加熱絲和測量電極一同燒結在金屬氧化物半導體管芯內;另一種是旁熱式,這種氣敏元件以陶瓷管為基底,管內穿加熱絲,管外側有兩個測量極,測量極之間為金屬氧化物氣敏材料,經高溫燒結而成。
以SnO2氣敏元件為例,它是由0.1--10um的晶體集合而成,這種晶體是作為N型半導體而工作的。在正常情況下,是處于氧離子缺位的狀態。當遇到離解能較小且易于失去電子的可燃性氣體分子時,電子從氣體分子向半導體遷移,半導體的載流子濃度增加,因此電導率增加。而對于p型半導體來說,它的晶格是陽離子缺位狀態,當遇到可燃性氣體時其電導率則減小。
氣敏電阻的溫度特性如圖所示,圖中縱坐標為靈敏度,即由于電導率的變化所引起在負載上所得到的值號電壓。由曲線可以看出,SnO2在室溫下雖能吸附氣體,但其電導率變化不大。但當溫度增加后,電導率就發生較大的變化,因此氣敏元件在使用時需要加溫。
此外,在氣敏元件的材料中加入微量的鉛、鉑、金、銀等元素以及一些金屬鹽類催化劑可以獲得低溫時的靈敏度,也可增強對氣體種類的選擇性。
氣敏電阻根據加熱的方式可分為直熱式和旁熱式兩種,直熱式消耗功率大,穩定性較差,故應用逐漸減少。旁熱式性能穩定,消耗功率小,其結構上往往加有封壓雙層的不銹鋼絲網防爆,因此安全可靠,其應用面較廣。
氣敏電阻結構
氣敏電阻的結構示意圖見下圖。
從圖中能夠可以看出,氣敏器件主要由防爆網、管座、電極、封裝玻璃、加熱絲和氧化物等幾部分組成。
氣敏電阻主要參數
加熱功率
加熱電壓與加熱電流的乘積。
工作電壓
工作條件下,氣敏電阻兩極間的電壓。
靈敏度
氣敏電阻在最佳工作條件下,接觸氣體后其電阻值隨氣體濃度變化的特性。如果采用電壓測量法,其值等于接觸某種氣體前后負載電阻上電壓降之比。
響應時間
在最佳工作條件下,接觸待測氣體后,負載電阻的電壓變化到規定值所需的時間。
恢復時間
在最佳工作條件下,脫離被測氣體后,負載電阻上電壓恢復到規定值所需要的時間。