?????? 光耦合器(optical coupler,英文縮寫為OC)亦稱光電隔離器或光電耦合器,簡稱光耦。它是以光為媒介來傳輸電信號的器件,通常把發光器(紅外線發光二極管LED)與受光器(光敏半導體管)封裝在同一管殼內。當輸入端加電信號時發光器發出光線,受光器接受光線之后就產生光電流,從輸出端流出,從而實現了“電—光—電”轉換。普通光耦合器只能傳輸數字(開關)信號,不適合傳輸模擬信號。近年來問世的線性光耦合器能夠傳輸連續變化的模擬電壓或模擬電流信號,使其應用領域大為拓寬。
1 光耦合器的類型及性能特點
1.1 光耦合器的類型
?光耦合器有雙列直插式、管式、光導纖維式等多種封裝形式,其種類達數十種。光耦合器的分類及內部電路如圖1所示。圖中是8種典型產品的型號:(a)通用型(無基極引線);(b)通用型(有基極引線);(c)達林頓型;(d)高速型;(e)光集成電路;(f)光纖型;(g)光敏晶閘管型;(h)光敏場效應管型。
1.2 光耦合器的性能特點
?光耦合器的主要優點是單向傳輸信號,輸入端與輸出端完全實現了電氣隔離,抗干擾能力強,使用壽命長,傳輸效率高。它廣泛用于電平轉換、信號隔離、級間隔離 、開關電路、遠距離信號傳輸、脈沖放大、固態繼電器(SSR)、儀器儀表、通信設備及微機接口中。在單片開關電源中,利用線性光耦合器可構成光耦反饋電路,通過調節控制端電流來改變占空比,達到精密穩壓目的。
1.3 光耦合器的技術參數
????? 主要有發光二極管正向壓降VF、正向電流IF、電流傳輸比CTR、輸入級與輸出級之間的絕緣電阻、集電極-發射極反向擊穿電壓V(BR)CEO、集電極-發射極飽和壓降VCE(sat)。此外,在傳輸數字信號時還需考慮上升時間、下降時間、延遲時間和存儲時間等參數。
????? 常用參數:
正向壓降VF:二極管通過的正向電流為規定值時,正負極之間所產生的電壓降。
正向電流IF:在被測管兩端加一定的正向電壓時二極管中流過的電流。
反向電流IR:在被測管兩端加規定反向工作電壓VR時,二極管中流過的電流。
反向擊穿電壓VBR::被測管通過的反向電流IR為規定值時,在兩極間所產生的電壓降。
結電容CJ:在規定偏壓下,被測管兩端的電容值。
反向擊穿電壓V(BR)CEO:發光二極管開路,集電極電流IC為規定值,集電極與發射集間的電壓降。
輸出飽和壓降VCE(sat):發光二極管工作電流IF和集電極電流IC為規定值時,并保持IC/IF≤CTRmin時(CTRmin在被測管技術條件中規定)集電極與發射極之間的電壓降。
反向截止電流ICEO:發光二極管開路,集電極至發射極間的電壓為規定值時,流過集電極的電流為反向截止電流。
電流傳輸比CTR:輸出管的工作電壓為規定值時,輸出電流和發光二極管正向電流之比為電流傳輸比CTR。
脈沖上升時間tr、下降時間tf:光耦合器在規定工作條件下,發光二極管輸入規定電流IFP的脈沖波,輸出端管則輸出相應的脈沖波,從輸出脈沖前沿幅度的10%到90%,所需時間為脈沖上升時間tr。從輸出脈沖后沿幅度的90%到10%,所需時間為脈沖下降時間tf。
傳輸延遲時間tPHL、tPLH:光耦合器在規定工作條件下,發光二極管輸入規定電流IFP的脈沖波,輸出端管則輸出相應的脈沖波,從輸入脈沖前沿幅度的50%到輸出脈沖電平下降到1.5V時所需時間為傳輸延遲時間tPHL。從輸入脈沖后沿幅度的50%到輸出脈沖電平上升到1.5V時所需時間為傳輸延遲時間tPLH。
入出間隔離電容CIO:光耦合器件輸入端和輸出端之間的電容值。
入出間隔離電阻RIO:半導體光耦合器輸入端和輸出端之間的絕緣電阻值。
入出間隔離電壓VIO:光耦合器輸入端和輸出端之間絕緣耐壓值。?
????? 電流傳輸比是光耦合器的重要參數,通常用直流電流傳輸比來表示。當輸出電壓保持恒定時,它等于直流輸出電流IC與直流輸入電流IF的百分比。
????? 采用一只光敏三極管的光耦合器,CTR的范圍大多為20%~300%(如4N35),而PC817則為80%~160%,達林頓型光耦合器(如4N30)可達100%~5000%。這表明欲獲得同樣的輸出電流,后者只需較小的輸入電流。因此,CTR參數與晶體管的hFE有某種相似之處。線性光耦合器與普通光耦合器典型的CTR-IF特性曲線,分別如圖2中的虛線和實線所示。
???? 普通光耦合器的CTR-IF特性曲線呈非線性,在IF較小時的非線性失真尤為嚴重,因此它不適合傳輸模擬信號。線性光耦合器的CTR-IF特性曲線具有良好的線性度,特別是在傳輸小信號時,其交流電流傳輸比(ΔCTR=ΔIC/ΔIF)很接近于直流電流傳輸比CTR值。因此,它適合傳輸模擬電壓或電流信號,能使輸出與輸入之間呈線性關系。這是其重要特性。
2 線性光耦合器的產品分類及選取原則
2.1 線性光耦合器的產品分類
? 線性光耦合器的典型產品及主要參數見表1,這些光耦均以光敏三極管作為接收管。
2.2 線性光耦合器的選取原則
?在設計光耦反饋式開關電源時必須正確選擇線性光耦合器的型號及參數,選取原則如下:
?①光耦合器的電流傳輸比(CTR)的允許范圍是50%~200%。這是因為當CTR<50%時,光耦中的LED就需要較大的工作電流(IF>5.0mA),才能正常控制單片開關電源IC的占空比,這會增大光耦的功耗。若CTR>200%,在啟動電路或者當負載發生突變時,有可能將單片開關電源誤觸發,影響正常輸出。
?②推薦采用線性光耦合器,其特點是CTR值能夠在一定范圍內做線性調整。
?③由英國埃索柯姆(Isocom)公司、美國摩托羅拉公司生產的4N××系列(如4N25 、4N26、4N35)光耦合器,目前在國內應用地十分普遍。鑒于此類光耦合器呈現開關特性,其線性度差,適宜傳輸數字信號(高、低電平),因此不推薦用在開關電源中。
光電偶合器件(簡稱光耦)是把發光器件(如發光二極體)和光敏器件(如光敏三極管)組裝在一起,通過光線實現耦合構成電—光和光—電的轉換器件。光電耦合器分為很多種類,圖1所示為常用的三極管型光電耦合器原理圖。
當電信號送入光電耦合器的輸入端時,發光二極體通過電流而發光,光敏元件受到光照后產生電流,CE導通;當輸入端無信號,發光二極體不亮,光敏三極管截止,CE不通。對于數位量,當輸入為低電平“0”時,光敏三極管截止,輸出為高電平“1”;當輸入為高電平“1”時,光敏三極管飽和導通,輸出為低電平“ 0”。若基極有引出線則可滿足溫度補償、檢測調制要求。這種光耦合器性能較好,價格便宜,因而應用廣泛。
????????????????? 圖一 最常用的光電耦合器之內部結構圖 三極管接收型? 4腳封裝
??????????????????????????? 圖二 光電耦合器之內部結構圖 三極管接收型? 6腳封裝
????????????圖三 光電耦合器之內部結構圖 雙發光二極管輸入 三極管接收型 4腳封裝
??????????????????????? ??????? 圖四 光電耦合器之內部結構圖 可控硅接收型? 8腳封裝
圖五 光電耦合器之內部結構圖 雙二極管接收型? 6腳封裝
光電耦合器之所以在傳輸信號的同時能有效地抑制尖脈沖和各種雜訊干擾,使通道上的信號雜訊比大為提高,主要有以下幾方面的原因:
(1)光電耦合器的輸入阻抗很小,只有幾百歐姆,而干擾源的阻抗較大,通常為105~106Ω。據分壓原理可知,即使干擾電壓的幅度較大,但饋送到光電耦合器輸入端的雜訊電壓會很小,只能形成很微弱的電流,由于沒有足夠的能量而不能使二極體發光,從而被抑制掉了。
(2)光電耦合器的輸入回路與輸出回路之間沒有電氣聯系,也沒有共地;之間的分布電容極小,而絕緣電阻又很大,因此回路一邊的各種干擾雜訊都很難通過光電耦合器饋送到另一邊去,避免了共阻抗耦合的干擾信號的產生。
(3)光電耦合器可起到很好的安全保障作用,即使當外部設備出現故障,甚至輸入信號線短接時,也不會損壞儀表。因為光耦合器件的輸入回路和輸出回路之間可以承受幾千伏的高壓。
(4)光電耦合器的回應速度極快,其回應延遲時間只有10μs左右,適于對回應速度要求很高的場合。
光電隔離技術的應用
微機介面電路中的光電隔離
微機有多個輸入埠,接收來自遠處現場設備傳來的狀態信號,微機對這些信號處理后,輸出各種控制信號去執行相應的操作。在現場環境較惡劣時,會存在較大的雜訊干擾,若這些干擾隨輸入信號一起進入微機系統,會使控制準確性降低,產生誤動作。因而,可在微機的輸入和輸出端,用光耦作介面,對信號及雜訊進行隔離。典型的光電耦合電路如圖6所示。該電路主要應用在“A/D轉換器”的數位信號輸出,及由CPU發出的對前向通道的控制信號與類比電路的介面處,從而實現在不同系統間信號通路相聯的同時,在電氣通路上相互隔離,并在此基礎上實現將類比電路和數位電路相互隔離,起到抑制交叉串擾的作用。
圖六 光電耦合器接線原理
對于線性類比電路通道,要求光電耦合器必須具有能夠進行線性變換和傳輸的特性,或選擇對管,采用互補電路以提高線性度,或用V/F變換后再用數位光耦進行隔離。
功率驅動電路中的光電隔離
在微機控制系統中,大量應用的是開關量的控制,這些開關量一般經過微機的I/O輸出,而I/O的驅動能力有限,一般不足以驅動一些點磁執行器件,需加接驅動介面電路,為避免微機受到干擾,須采取隔離措施。如可控硅所在的主電路一般是交流強電回路,電壓較高,電流較大,不易與微機直接相連,可應用光耦合器將微機控制信號與可控硅觸發電路進行隔離。電路實例如圖7所示。
?????????????????????? 圖七 雙向可控硅(晶閘管)
在馬達控制電路中,也可采用光耦來把控制電路和馬達高壓電路隔離開。馬達靠MOSFET或IGBT功率管提供驅動電流,功率管的開關控制信號和大功率管之間需隔離放大級。在光耦隔離級—放大器級—大功率管的連接形式中,要求光耦具有高輸出電壓、高速和高共模抑制。
遠距離的隔離傳送
在電腦應用系統中,由于測控系統與被測和被控設備之間不可避免地要進行長線傳輸,信號在傳輸過程中很易受到干擾,導致傳輸信號發生畸變或失真;另外,在通過較長電纜連接的相距較遠的設備之間,常因設備間的地線電位差,導致地環路電流,對電路形成差模干擾電壓。為確保長線傳輸的可靠性,可采用光電耦合隔離措施,將2個電路的電氣連接隔開,切斷可能形成的環路,使他們相互獨立,提高電路系統的抗干擾性能。若傳輸線較長,現場干擾嚴重,可通過兩級光電耦合器將長線完全“浮置”起來,如圖8所示。
?
??????????????? ? 圖八 傳輸長線的光耦浮置處理
長線的“浮置”去掉了長線兩端間的公共地線,不但有效消除了各電路的電流經公共地線時所產生雜訊電壓形成相互竄擾,而且也有效地解決了長線驅動和阻抗匹配問題;同時,受控設備短路時,還能保護系統不受損害。
過零檢測電路中的光電隔離
零交叉,即過零檢測,指交流電壓過零點被自動檢測進而產生驅動信號,使電子開關在此時刻開始開通。現代的零交叉技術已與光電耦合技術相結合。圖9為一種單片機數控交流調壓器中可使用的過零檢測電路。
?
????????????????? 圖九 過零檢測
220V交流電壓經電阻R1限流后直接加到2個反向并聯的光電耦合器GD1,GD2的輸入端。在交流電源的正負半周,GD1和GD2分別導通,U0輸出低電平,在交流電源正弦波過零的瞬間,GD1和GD2均不導通,U0輸出高電平。該脈沖信號經反閘整形后作為單片機的中斷請求信號和可控矽的過零同步信號。
注意事項
(1)在光電耦合器的輸入部分和輸出部分必須分別采用獨立的電源,若兩端共用一個電源,則光電耦合器的隔離作用將失去意義。
(2)當用光電耦合器來隔離輸入輸出通道時,必須對所有的信號(包括數位量信號、控制量信號、狀態信號)全部隔離,使得被隔離的兩邊沒有任何電氣上的聯系,否則這種隔離是沒有意義的。
?
?